Package | Description |
---|---|
org.apache.ignite.ml.clustering.kmeans |
Contains kMeans clustering algorithm.
|
org.apache.ignite.ml.composition |
Contains classes for ensemble of models implementation.
|
org.apache.ignite.ml.composition.boosting |
Contains Gradient Boosting regression and classification abstract classes
allowing regressor type selecting in child classes.
|
org.apache.ignite.ml.composition.boosting.convergence |
Package contains implementation of convergency checking algorithms for gradient boosting.
|
org.apache.ignite.ml.composition.boosting.convergence.mean |
Contains implementation of convergence checking computer by mean of absolute value of errors in dataset.
|
org.apache.ignite.ml.composition.boosting.convergence.median |
Contains implementation of convergence checking computer by median of medians of errors in dataset.
|
org.apache.ignite.ml.composition.boosting.convergence.simple |
Contains implementation of Stub for convergence checking.
|
org.apache.ignite.ml.dataset |
Base package for machine learning dataset classes.
|
org.apache.ignite.ml.dataset.impl.bootstrapping |
Base package for bootstrapped implementation of machine learning dataset.
|
org.apache.ignite.ml.dataset.impl.cache |
Base package for cache based implementation of machine learning dataset.
|
org.apache.ignite.ml.dataset.impl.local |
Base package for local implementation of machine learning dataset.
|
org.apache.ignite.ml.dataset.primitive |
Package that contains basic primitives build on top of
Dataset . |
org.apache.ignite.ml.dataset.primitive.builder.data |
Contains partition
data builders. |
org.apache.ignite.ml.knn |
Contains main APIs for kNN algorithms.
|
org.apache.ignite.ml.knn.ann |
Contains main APIs for ANN classification algorithms.
|
org.apache.ignite.ml.knn.classification |
Contains main APIs for kNN classification algorithms.
|
org.apache.ignite.ml.knn.regression |
Contains helper classes for kNN regression algorithms.
|
org.apache.ignite.ml.math.functions |
Contains serializable functions for distributed code algebra.
|
org.apache.ignite.ml.math.primitives.matrix |
Contains matrix related classes.
|
org.apache.ignite.ml.math.primitives.vector |
Contains vector related classes.
|
org.apache.ignite.ml.math.primitives.vector.impl |
Contains several vector implementations.
|
org.apache.ignite.ml.math.util |
Some math utils.
|
org.apache.ignite.ml.nn |
Contains neural networks and related classes.
|
org.apache.ignite.ml.pipeline |
Contains Pipeline API.
|
org.apache.ignite.ml.preprocessing |
Base package for machine learning preprocessing classes.
|
org.apache.ignite.ml.preprocessing.binarization |
Contains binarization preprocessor.
|
org.apache.ignite.ml.preprocessing.encoding |
Contains encoding preprocessors.
|
org.apache.ignite.ml.preprocessing.encoding.onehotencoder |
Contains one hot encoding preprocessor.
|
org.apache.ignite.ml.preprocessing.encoding.stringencoder |
Contains string encoding preprocessor.
|
org.apache.ignite.ml.preprocessing.imputing |
Contains Imputer preprocessor.
|
org.apache.ignite.ml.preprocessing.maxabsscaling |
Contains Max Abs Scaler preprocessor.
|
org.apache.ignite.ml.preprocessing.minmaxscaling |
Contains Min Max Scaler preprocessor.
|
org.apache.ignite.ml.preprocessing.normalization |
Contains Normalizer preprocessor.
|
org.apache.ignite.ml.regressions.linear |
Contains various linear regressions.
|
org.apache.ignite.ml.regressions.logistic.binomial |
Contains binomial logistic regression.
|
org.apache.ignite.ml.regressions.logistic.multiclass |
Contains multi-class logistic regression.
|
org.apache.ignite.ml.selection.cv |
Root package for cross-validation algorithms.
|
org.apache.ignite.ml.selection.scoring.cursor |
Util classes used for score calculation.
|
org.apache.ignite.ml.selection.scoring.evaluator |
Package for model evaluator classes.
|
org.apache.ignite.ml.structures.partition |
Contains internal APIs for dataset partitioned labeled datasets.
|
org.apache.ignite.ml.svm |
Contains main APIs for SVM(support vector machines) algorithms.
|
org.apache.ignite.ml.trainers |
Contains model trainers.
|
org.apache.ignite.ml.tree |
Root package for decision trees.
|
org.apache.ignite.ml.tree.boosting |
Contains implementation of gradient boosting on trees.
|
org.apache.ignite.ml.tree.data |
Contains data and data builder required for decision tree trainers built on top of partition based dataset.
|
org.apache.ignite.ml.tree.randomforest |
Contains random forest implementation classes.
|
Modifier and Type | Method and Description |
---|---|
<K,V> KMeansModel |
KMeansTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> KMeansModel |
KMeansTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
protected <K,V> KMeansModel |
KMeansTrainer.updateModel(KMeansModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
protected <K,V> KMeansModel |
KMeansTrainer.updateModel(KMeansModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ModelsComposition |
BaggingModelTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> ModelsComposition |
BaggingModelTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> ModelsComposition |
BaggingModelTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Learn new models on dataset and create new Compositions over them and already learned models.
|
<K,V> ModelsComposition |
BaggingModelTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Learn new models on dataset and create new Compositions over them and already learned models.
|
Modifier and Type | Method and Description |
---|---|
protected <V,K> IgniteBiTuple<Double,Long> |
GDBTrainer.computeInitialValue(DatasetBuilder<K,V> builder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Compute mean value of label as first approximation.
|
protected <V,K> IgniteBiTuple<Double,Long> |
GDBTrainer.computeInitialValue(DatasetBuilder<K,V> builder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Compute mean value of label as first approximation.
|
<K,V> ModelsComposition |
GDBTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> ModelsComposition |
GDBTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
protected <V,K> boolean |
GDBBinaryClassifierTrainer.learnLabels(DatasetBuilder<K,V> builder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lExtractor)
Defines unique labels in dataset if need (useful in case of classification).
|
protected <V,K> boolean |
GDBBinaryClassifierTrainer.learnLabels(DatasetBuilder<K,V> builder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lExtractor)
Defines unique labels in dataset if need (useful in case of classification).
|
protected abstract <V,K> boolean |
GDBTrainer.learnLabels(DatasetBuilder<K,V> builder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lExtractor)
Defines unique labels in dataset if need (useful in case of classification).
|
protected abstract <V,K> boolean |
GDBTrainer.learnLabels(DatasetBuilder<K,V> builder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lExtractor)
Defines unique labels in dataset if need (useful in case of classification).
|
protected <V,K> boolean |
GDBRegressionTrainer.learnLabels(DatasetBuilder<K,V> builder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lExtractor)
Defines unique labels in dataset if need (useful in case of classification).
|
protected <V,K> boolean |
GDBRegressionTrainer.learnLabels(DatasetBuilder<K,V> builder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lExtractor)
Defines unique labels in dataset if need (useful in case of classification).
|
<K,V> List<Model<Vector,Double>> |
GDBLearningStrategy.learnModels(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Implementation of gradient boosting iterations.
|
<K,V> List<Model<Vector,Double>> |
GDBLearningStrategy.learnModels(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Implementation of gradient boosting iterations.
|
<K,V> List<Model<Vector,Double>> |
GDBLearningStrategy.update(GDBTrainer.GDBModel mdlToUpdate,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then
trainer updates model in according to new data and return new model.
|
<K,V> List<Model<Vector,Double>> |
GDBLearningStrategy.update(GDBTrainer.GDBModel mdlToUpdate,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then
trainer updates model in according to new data and return new model.
|
protected <K,V> ModelsComposition |
GDBTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
protected <K,V> ModelsComposition |
GDBTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
abstract <K,V> ConvergenceChecker<K,V> |
ConvergenceCheckerFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Create an instance of ConvergenceChecker.
|
abstract <K,V> ConvergenceChecker<K,V> |
ConvergenceCheckerFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Create an instance of ConvergenceChecker.
|
Constructor and Description |
---|
ConvergenceChecker(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor,
double precision)
Constructs an instance of ConvergenceChecker.
|
ConvergenceChecker(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor,
double precision)
Constructs an instance of ConvergenceChecker.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ConvergenceChecker<K,V> |
MeanAbsValueConvergenceCheckerFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Create an instance of ConvergenceChecker.
|
<K,V> ConvergenceChecker<K,V> |
MeanAbsValueConvergenceCheckerFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Create an instance of ConvergenceChecker.
|
Constructor and Description |
---|
MeanAbsValueConvergenceChecker(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor,
double precision)
Creates an intance of MeanAbsValueConvergenceChecker.
|
MeanAbsValueConvergenceChecker(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor,
double precision)
Creates an intance of MeanAbsValueConvergenceChecker.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ConvergenceChecker<K,V> |
MedianOfMedianConvergenceCheckerFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Create an instance of ConvergenceChecker.
|
<K,V> ConvergenceChecker<K,V> |
MedianOfMedianConvergenceCheckerFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Create an instance of ConvergenceChecker.
|
Constructor and Description |
---|
MedianOfMedianConvergenceChecker(long sampleSize,
IgniteFunction<Double,Double> lblMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> fExtr,
IgniteBiFunction<K,V,Double> lbExtr,
double precision)
Creates an instance of MedianOfMedianConvergenceChecker.
|
MedianOfMedianConvergenceChecker(long sampleSize,
IgniteFunction<Double,Double> lblMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> fExtr,
IgniteBiFunction<K,V,Double> lbExtr,
double precision)
Creates an instance of MedianOfMedianConvergenceChecker.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ConvergenceChecker<K,V> |
ConvergenceCheckerStubFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Create an instance of ConvergenceChecker.
|
<K,V> ConvergenceChecker<K,V> |
ConvergenceCheckerStubFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Create an instance of ConvergenceChecker.
|
Constructor and Description |
---|
ConvergenceCheckerStub(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Creates an intance of ConvergenceCheckerStub.
|
ConvergenceCheckerStub(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Creates an intance of ConvergenceCheckerStub.
|
Modifier and Type | Method and Description |
---|---|
default <D2 extends AutoCloseable> |
PartitionDataBuilder.andThen(IgniteBiFunction<D,C,D2> fun)
Makes a composed partition
data builder that first builds a data and then applies the specified
function on the result. |
default <R> R |
Dataset.compute(IgniteBiFunction<D,Integer,R> map,
IgniteBinaryOperator<R> reduce)
Applies the specified
map function to every partition data and partition index in the dataset
and then reduces map results to final result by using the reduce function. |
<R> R |
Dataset.compute(IgniteBiFunction<D,Integer,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and partition index in the dataset
and then reduces map results to final result by using the reduce function. |
default <R> R |
Dataset.computeWithCtx(IgniteBiFunction<C,D,R> map,
IgniteBinaryOperator<R> reduce)
Applies the specified
map function to every partition data and context in the dataset
and then reduces map results to final result by using the reduce function. |
default <R> R |
Dataset.computeWithCtx(IgniteBiFunction<C,D,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and context in the dataset
and then reduces map results to final result by using the reduce function. |
static <K,V> SimpleDataset<EmptyContext> |
DatasetFactory.createSimpleDataset(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor)
Creates a new instance of distributed
SimpleDataset using the specified featureExtractor . |
static <K,V,C extends Serializable> |
DatasetFactory.createSimpleDataset(DatasetBuilder<K,V> datasetBuilder,
PartitionContextBuilder<K,V,C> partCtxBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor)
Creates a new instance of distributed
SimpleDataset using the specified partCtxBuilder and
featureExtractor . |
static <K,V> SimpleDataset<EmptyContext> |
DatasetFactory.createSimpleDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiFunction<K,V,Vector> featureExtractor)
Creates a new instance of distributed
SimpleDataset using the specified featureExtractor . |
static <K,V,C extends Serializable> |
DatasetFactory.createSimpleDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
PartitionContextBuilder<K,V,C> partCtxBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor)
Creates a new instance of distributed
SimpleDataset using the specified partCtxBuilder and
featureExtractor . |
static <K,V> SimpleDataset<EmptyContext> |
DatasetFactory.createSimpleDataset(Map<K,V> upstreamMap,
int partitions,
IgniteBiFunction<K,V,Vector> featureExtractor)
Creates a new instance of local
SimpleDataset using the specified featureExtractor . |
static <K,V,C extends Serializable> |
DatasetFactory.createSimpleDataset(Map<K,V> upstreamMap,
int partitions,
PartitionContextBuilder<K,V,C> partCtxBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor)
Creates a new instance of local
SimpleDataset using the specified partCtxBuilder and
featureExtractor . |
static <K,V> SimpleLabeledDataset<EmptyContext> |
DatasetFactory.createSimpleLabeledDataset(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of distributed
SimpleLabeledDataset using the specified featureExtractor
and lbExtractor . |
static <K,V> SimpleLabeledDataset<EmptyContext> |
DatasetFactory.createSimpleLabeledDataset(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of distributed
SimpleLabeledDataset using the specified featureExtractor
and lbExtractor . |
static <K,V,C extends Serializable> |
DatasetFactory.createSimpleLabeledDataset(DatasetBuilder<K,V> datasetBuilder,
PartitionContextBuilder<K,V,C> partCtxBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of distributed
SimpleLabeledDataset using the specified partCtxBuilder ,
featureExtractor and lbExtractor . |
static <K,V,C extends Serializable> |
DatasetFactory.createSimpleLabeledDataset(DatasetBuilder<K,V> datasetBuilder,
PartitionContextBuilder<K,V,C> partCtxBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of distributed
SimpleLabeledDataset using the specified partCtxBuilder ,
featureExtractor and lbExtractor . |
static <K,V> SimpleLabeledDataset<EmptyContext> |
DatasetFactory.createSimpleLabeledDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of distributed
SimpleLabeledDataset using the specified featureExtractor
and lbExtractor . |
static <K,V> SimpleLabeledDataset<EmptyContext> |
DatasetFactory.createSimpleLabeledDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of distributed
SimpleLabeledDataset using the specified featureExtractor
and lbExtractor . |
static <K,V,C extends Serializable> |
DatasetFactory.createSimpleLabeledDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
PartitionContextBuilder<K,V,C> partCtxBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of distributed
SimpleLabeledDataset using the specified partCtxBuilder ,
featureExtractor and lbExtractor . |
static <K,V,C extends Serializable> |
DatasetFactory.createSimpleLabeledDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
PartitionContextBuilder<K,V,C> partCtxBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of distributed
SimpleLabeledDataset using the specified partCtxBuilder ,
featureExtractor and lbExtractor . |
static <K,V> SimpleLabeledDataset<EmptyContext> |
DatasetFactory.createSimpleLabeledDataset(Map<K,V> upstreamMap,
int partitions,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of local
SimpleLabeledDataset using the specified featureExtractor
and lbExtractor . |
static <K,V> SimpleLabeledDataset<EmptyContext> |
DatasetFactory.createSimpleLabeledDataset(Map<K,V> upstreamMap,
int partitions,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of local
SimpleLabeledDataset using the specified featureExtractor
and lbExtractor . |
static <K,V,C extends Serializable> |
DatasetFactory.createSimpleLabeledDataset(Map<K,V> upstreamMap,
int partitions,
PartitionContextBuilder<K,V,C> partCtxBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of local
SimpleLabeledDataset using the specified partCtxBuilder ,
featureExtractor and lbExtractor . |
static <K,V,C extends Serializable> |
DatasetFactory.createSimpleLabeledDataset(Map<K,V> upstreamMap,
int partitions,
PartitionContextBuilder<K,V,C> partCtxBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of local
SimpleLabeledDataset using the specified partCtxBuilder ,
featureExtractor and lbExtractor . |
Constructor and Description |
---|
BootstrappedDatasetBuilder(IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor,
int samplesCnt,
double subsampleSize)
Creates an instance of BootstrappedDatasetBuilder.
|
BootstrappedDatasetBuilder(IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor,
int samplesCnt,
double subsampleSize)
Creates an instance of BootstrappedDatasetBuilder.
|
Modifier and Type | Method and Description |
---|---|
<R> R |
CacheBasedDataset.compute(IgniteBiFunction<D,Integer,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and partition index in the dataset
and then reduces map results to final result by using the reduce function. |
Modifier and Type | Method and Description |
---|---|
<R> R |
LocalDataset.compute(IgniteBiFunction<D,Integer,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and partition index in the dataset
and then reduces map results to final result by using the reduce function. |
Modifier and Type | Method and Description |
---|---|
<R> R |
DatasetWrapper.compute(IgniteBiFunction<D,Integer,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and partition index in the dataset
and then reduces map results to final result by using the reduce function. |
Constructor and Description |
---|
FeatureMatrixWithLabelsOnHeapDataBuilder(IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Constructs a new instance of decision tree data builder.
|
FeatureMatrixWithLabelsOnHeapDataBuilder(IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Constructs a new instance of decision tree data builder.
|
Constructor and Description |
---|
SimpleDatasetDataBuilder(IgniteBiFunction<K,V,Vector> featureExtractor)
Construct a new instance of partition
data builder that makes SimpleDatasetData . |
SimpleLabeledDatasetDataBuilder(IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Constructs a new instance of partition
data builder that makes SimpleLabeledDatasetData . |
SimpleLabeledDatasetDataBuilder(IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Constructs a new instance of partition
data builder that makes SimpleLabeledDatasetData . |
Modifier and Type | Method and Description |
---|---|
static <K,V> @Nullable Dataset<EmptyContext,LabeledVectorSet<Double,LabeledVector>> |
KNNUtils.buildDataset(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Builds dataset.
|
static <K,V> @Nullable Dataset<EmptyContext,LabeledVectorSet<Double,LabeledVector>> |
KNNUtils.buildDataset(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Builds dataset.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ANNClassificationModel |
ANNClassificationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> ANNClassificationModel |
ANNClassificationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
protected <K,V> ANNClassificationModel |
ANNClassificationTrainer.updateModel(ANNClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
protected <K,V> ANNClassificationModel |
ANNClassificationTrainer.updateModel(ANNClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> KNNClassificationModel |
KNNClassificationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> KNNClassificationModel |
KNNClassificationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> KNNClassificationModel |
KNNClassificationTrainer.updateModel(KNNClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> KNNClassificationModel |
KNNClassificationTrainer.updateModel(KNNClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> KNNRegressionModel |
KNNRegressionTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> KNNRegressionModel |
KNNRegressionTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> KNNRegressionModel |
KNNRegressionTrainer.updateModel(KNNRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> KNNRegressionModel |
KNNRegressionTrainer.updateModel(KNNRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Interface and Description |
---|---|
interface |
IntIntToDoubleFunction
Getters functions for matrices.
|
Modifier and Type | Field and Description |
---|---|
static IgniteBiFunction<Double,Double,Double> |
Functions.COMPARE
Function that returns {@code a < b ?
|
static IgniteBiFunction<Double,Double,Double> |
Functions.LG
Function that returns
Math.log(a) / Math.log(b) . |
static IgniteBiFunction<Double,Double,Double> |
Functions.MAX_ABS
Function that returns
max(abs(a), abs(b)) . |
static IgniteBiFunction<Double,Double,Double> |
Functions.MIN
Function that returns
min(a, b) . |
static IgniteBiFunction<Double,Double,Double> |
Functions.MIN_ABS
Function that returns
min(abs(a), abs(b)) . |
static IgniteBiFunction<Double,Double,Double> |
Functions.MINUS
Function that returns
a - b . |
static IgniteBiFunction<Double,Double,Double> |
Functions.MINUS_ABS
Function that returns
abs(a - b) . |
static IgniteBiFunction<Double,Double,Double> |
Functions.MINUS_SQUARED
Function that returns
(a - b) * (a - b) |
static IgniteBiFunction<Double,Double,Double> |
Functions.MOD
Function that returns
a % b . |
static IgniteBiFunction<Double,Double,Double> |
Functions.MULT
Function that returns
a * b . |
static IgniteBiFunction<Double,Double,Double> |
Functions.PLUS
Function that returns
a + b . |
static IgniteBiFunction<Double,Double,Double> |
Functions.PLUS_ABS
Function that returns
Math.abs(a) + Math.abs(b) . |
Modifier and Type | Method and Description |
---|---|
default <V> IgniteBiFunction<T,U,V> |
IgniteBiFunction.andThen(IgniteFunction<? super R,? extends V> after) |
static IgniteBiFunction<Double,Double,Double> |
Functions.minusMult(double constant)
Function that returns
a - b*constant . |
static <A,B,C> IgniteBiFunction<A,B,IgniteSupplier<C>> |
Functions.outputSupplier(IgniteBiFunction<A,B,C> f)
Transform function of form (a, b) -> c into (a, b) - () -> c.
|
static IgniteBiFunction<Double,Double,Double> |
Functions.plusMult(double constant)
Function that returns
a + b*constant . |
Modifier and Type | Method and Description |
---|---|
static <A,B,C> IgniteCurriedBiFunction<A,B,C> |
Functions.curry(IgniteBiFunction<A,B,C> f)
Transform bi-function of the form (a, b) -> c into a function of form a -> (b -> c).
|
static <A,B,C> IgniteBiFunction<A,B,IgniteSupplier<C>> |
Functions.outputSupplier(IgniteBiFunction<A,B,C> f)
Transform function of form (a, b) -> c into (a, b) - () -> c.
|
Modifier and Type | Method and Description |
---|---|
<T> T |
AbstractMatrix.foldMap(IgniteBiFunction<T,Double,T> foldFun,
IgniteDoubleFunction<Double> mapFun,
T zeroVal)
Folds this matrix into a single value.
|
<T> T |
Matrix.foldMap(IgniteBiFunction<T,Double,T> foldFun,
IgniteDoubleFunction<Double> mapFun,
T zeroVal)
Folds this matrix into a single value.
|
Matrix |
AbstractMatrix.map(Matrix mtx,
IgniteBiFunction<Double,Double,Double> fun)
Maps all values in this matrix through a given function.
|
Matrix |
Matrix.map(Matrix mtx,
IgniteBiFunction<Double,Double,Double> fun)
Maps all values in this matrix through a given function.
|
Modifier and Type | Method and Description |
---|---|
<T> T |
AbstractVector.foldMap(IgniteBiFunction<T,Double,T> foldFun,
IgniteDoubleFunction<Double> mapFun,
T zeroVal)
Folds this vector into a single value.
|
<T> T |
Vector.foldMap(IgniteBiFunction<T,Double,T> foldFun,
IgniteDoubleFunction<Double> mapFun,
T zeroVal)
Folds this vector into a single value.
|
<T> T |
AbstractVector.foldMap(Vector vec,
IgniteBiFunction<T,Double,T> foldFun,
IgniteBiFunction<Double,Double,Double> combFun,
T zeroVal)
Combines & maps two vector and folds them into a single value.
|
<T> T |
AbstractVector.foldMap(Vector vec,
IgniteBiFunction<T,Double,T> foldFun,
IgniteBiFunction<Double,Double,Double> combFun,
T zeroVal)
Combines & maps two vector and folds them into a single value.
|
<T> T |
Vector.foldMap(Vector vec,
IgniteBiFunction<T,Double,T> foldFun,
IgniteBiFunction<Double,Double,Double> combFun,
T zeroVal)
Combines & maps two vector and folds them into a single value.
|
<T> T |
Vector.foldMap(Vector vec,
IgniteBiFunction<T,Double,T> foldFun,
IgniteBiFunction<Double,Double,Double> combFun,
T zeroVal)
Combines & maps two vector and folds them into a single value.
|
Vector |
AbstractVector.map(IgniteBiFunction<Double,Double,Double> fun,
double y)
Maps all elements of this vector by applying given function to each element with a constant
second parameter
y . |
Vector |
Vector.map(IgniteBiFunction<Double,Double,Double> fun,
double y)
Maps all elements of this vector by applying given function to each element with a constant
second parameter
y . |
Vector |
AbstractVector.map(Vector vec,
IgniteBiFunction<Double,Double,Double> fun)
Maps all values in this vector through a given function.
|
Vector |
Vector.map(Vector vec,
IgniteBiFunction<Double,Double,Double> fun)
Maps all values in this vector through a given function.
|
static Vector |
VectorUtils.zipWith(Vector v1,
Vector v2,
IgniteBiFunction<Double,Double,Double> f)
Zip two vectors with given binary function
(i.e. apply binary function to both vector elementwise and construct vector from results).
|
Modifier and Type | Method and Description |
---|---|
<T> T |
DelegatingVector.foldMap(IgniteBiFunction<T,Double,T> foldFun,
IgniteDoubleFunction<Double> mapFun,
T zeroVal)
Folds this vector into a single value.
|
<T> T |
DelegatingVector.foldMap(Vector vec,
IgniteBiFunction<T,Double,T> foldFun,
IgniteBiFunction<Double,Double,Double> combFun,
T zeroVal)
Combines & maps two vector and folds them into a single value.
|
<T> T |
DelegatingVector.foldMap(Vector vec,
IgniteBiFunction<T,Double,T> foldFun,
IgniteBiFunction<Double,Double,Double> combFun,
T zeroVal)
Combines & maps two vector and folds them into a single value.
|
Vector |
DelegatingVector.map(IgniteBiFunction<Double,Double,Double> fun,
double y)
Maps all elements of this vector by applying given function to each element with a constant
second parameter
y . |
Vector |
DelegatingVector.map(Vector vec,
IgniteBiFunction<Double,Double,Double> fun)
Maps all values in this vector through a given function.
|
Modifier and Type | Method and Description |
---|---|
static Vector |
MatrixUtil.zipFoldByColumns(Matrix mtx1,
Matrix mtx2,
IgniteBiFunction<Vector,Vector,Double> fun)
Zips two matrices by column-by-column with specified function.
|
static Vector |
MatrixUtil.zipFoldByRows(Matrix mtx1,
Matrix mtx2,
IgniteBiFunction<Vector,Vector,Double> fun)
Zips two matrices by row-by-row with specified function.
|
Modifier and Type | Method and Description |
---|---|
<K,V> MultilayerPerceptron |
MLPTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Trains model based on the specified data.
|
<K,V> MultilayerPerceptron |
MLPTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Trains model based on the specified data.
|
protected <K,V> MultilayerPerceptron |
MLPTrainer.updateModel(MultilayerPerceptron lastLearnedMdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
protected <K,V> MultilayerPerceptron |
MLPTrainer.updateModel(MultilayerPerceptron lastLearnedMdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
IgniteBiFunction<K,V,Vector> |
PipelineMdl.getFeatureExtractor() |
IgniteBiFunction<K,V,Double> |
PipelineMdl.getLabelExtractor() |
Modifier and Type | Method and Description |
---|---|
Pipeline<K,V,R> |
Pipeline.addFeatureExtractor(IgniteBiFunction<K,V,R> featureExtractor)
Adds feature extractor as a zero stage.
|
Pipeline<K,V,R> |
Pipeline.addLabelExtractor(IgniteBiFunction<K,V,Double> lbExtractor)
Adds a label extractor for the produced model.
|
PipelineMdl<K,V> |
PipelineMdl.withFeatureExtractor(IgniteBiFunction featureExtractor) |
PipelineMdl<K,V> |
PipelineMdl.withLabelExtractor(IgniteBiFunction<K,V,Double> lbExtractor) |
Modifier and Type | Method and Description |
---|---|
IgniteBiFunction<K,V,R> |
PreprocessingTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,T> basePreprocessor)
Fits preprocessor.
|
default IgniteBiFunction<K,V,R> |
PreprocessingTrainer.fit(Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiFunction<K,V,T> basePreprocessor)
Fits preprocessor.
|
default IgniteBiFunction<K,V,R> |
PreprocessingTrainer.fit(Map<K,V> data,
int parts,
IgniteBiFunction<K,V,T> basePreprocessor)
Fits preprocessor.
|
Modifier and Type | Method and Description |
---|---|
IgniteBiFunction<K,V,R> |
PreprocessingTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,T> basePreprocessor)
Fits preprocessor.
|
default IgniteBiFunction<K,V,R> |
PreprocessingTrainer.fit(Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiFunction<K,V,T> basePreprocessor)
Fits preprocessor.
|
default IgniteBiFunction<K,V,R> |
PreprocessingTrainer.fit(Map<K,V> data,
int parts,
IgniteBiFunction<K,V,T> basePreprocessor)
Fits preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
BinarizationPreprocessor<K,V>
Preprocessing function that makes binarization.
|
Modifier and Type | Method and Description |
---|---|
BinarizationPreprocessor<K,V> |
BinarizationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Fits preprocessor.
|
Constructor and Description |
---|
BinarizationPreprocessor(double threshold,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Constructs a new instance of Binarization preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
EncoderPreprocessor<K,V>
Preprocessing function that makes encoding.
|
Modifier and Type | Field and Description |
---|---|
protected IgniteBiFunction<K,V,Object[]> |
EncoderPreprocessor.basePreprocessor
Base preprocessor.
|
Modifier and Type | Method and Description |
---|---|
EncoderPreprocessor<K,V> |
EncoderTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Object[]> basePreprocessor)
Fits preprocessor.
|
Constructor and Description |
---|
EncoderPreprocessor(Map<String,Integer>[] encodingValues,
IgniteBiFunction<K,V,Object[]> basePreprocessor,
Set<Integer> handledIndices)
Constructs a new instance of String Encoder preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
OneHotEncoderPreprocessor<K,V>
Preprocessing function that makes one-hot encoding.
|
Constructor and Description |
---|
OneHotEncoderPreprocessor(Map<String,Integer>[] encodingValues,
IgniteBiFunction<K,V,Object[]> basePreprocessor,
Set<Integer> handledIndices)
Constructs a new instance of One Hot Encoder preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
StringEncoderPreprocessor<K,V>
Preprocessing function that makes String encoding.
|
Constructor and Description |
---|
StringEncoderPreprocessor(Map<String,Integer>[] encodingValues,
IgniteBiFunction<K,V,Object[]> basePreprocessor,
Set<Integer> handledIndices)
Constructs a new instance of String Encoder preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
ImputerPreprocessor<K,V>
Preprocessing function that makes imputing.
|
Modifier and Type | Method and Description |
---|---|
ImputerPreprocessor<K,V> |
ImputerTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Fits preprocessor.
|
Constructor and Description |
---|
ImputerPreprocessor(Vector imputingValues,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Constructs a new instance of imputing preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
MaxAbsScalerPreprocessor<K,V>
The preprocessing function that makes maxabsscaling, transforms features to the scale
[-1,+1] . |
Modifier and Type | Method and Description |
---|---|
MaxAbsScalerPreprocessor<K,V> |
MaxAbsScalerTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Fits preprocessor.
|
Constructor and Description |
---|
MaxAbsScalerPreprocessor(double[] maxAbs,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Constructs a new instance of maxabsscaling preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
MinMaxScalerPreprocessor<K,V>
Preprocessing function that makes minmaxscaling.
|
Modifier and Type | Method and Description |
---|---|
MinMaxScalerPreprocessor<K,V> |
MinMaxScalerTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Fits preprocessor.
|
Constructor and Description |
---|
MinMaxScalerPreprocessor(double[] min,
double[] max,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Constructs a new instance of minmaxscaling preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
NormalizationPreprocessor<K,V>
Preprocessing function that makes normalization.
|
Modifier and Type | Method and Description |
---|---|
NormalizationPreprocessor<K,V> |
NormalizationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Fits preprocessor.
|
Constructor and Description |
---|
NormalizationPreprocessor(int p,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Constructs a new instance of Normalization preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
FeatureExtractorWrapper<K,V>
Feature extractor wrapper that adds additional column filled by 1.
|
Modifier and Type | Method and Description |
---|---|
<K,V> LinearRegressionModel |
LinearRegressionLSQRTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> LinearRegressionModel |
LinearRegressionLSQRTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> LinearRegressionModel |
LinearRegressionSGDTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> LinearRegressionModel |
LinearRegressionSGDTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
protected <K,V> LinearRegressionModel |
LinearRegressionLSQRTrainer.updateModel(LinearRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
protected <K,V> LinearRegressionModel |
LinearRegressionLSQRTrainer.updateModel(LinearRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
protected <K,V> LinearRegressionModel |
LinearRegressionSGDTrainer.updateModel(LinearRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
protected <K,V> LinearRegressionModel |
LinearRegressionSGDTrainer.updateModel(LinearRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> LogisticRegressionModel |
LogisticRegressionSGDTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> LogisticRegressionModel |
LogisticRegressionSGDTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
protected <K,V> LogisticRegressionModel |
LogisticRegressionSGDTrainer.updateModel(LogisticRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
protected <K,V> LogisticRegressionModel |
LogisticRegressionSGDTrainer.updateModel(LogisticRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> LogRegressionMultiClassModel |
LogRegressionMultiClassTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> LogRegressionMultiClassModel |
LogRegressionMultiClassTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> LogRegressionMultiClassModel |
LogRegressionMultiClassTrainer.updateModel(LogRegressionMultiClassModel newMdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> LogRegressionMultiClassModel |
LogRegressionMultiClassTrainer.updateModel(LogRegressionMultiClassModel newMdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
CrossValidationResult |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv,
ParamGrid paramGrid)
Computes cross-validated metrics with a passed parameter grid.
|
CrossValidationResult |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv,
ParamGrid paramGrid)
Computes cross-validated metrics with a passed parameter grid.
|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
UniformMapper<K,V> mapper,
int cv)
Computes cross-validated metrics.
|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
UniformMapper<K,V> mapper,
int cv)
Computes cross-validated metrics.
|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Map<K,V> upstreamMap,
IgniteBiPredicate<K,V> filter,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Map<K,V> upstreamMap,
IgniteBiPredicate<K,V> filter,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Map<K,V> upstreamMap,
IgniteBiPredicate<K,V> filter,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
UniformMapper<K,V> mapper,
int cv)
Computes cross-validated metrics.
|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Map<K,V> upstreamMap,
IgniteBiPredicate<K,V> filter,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
UniformMapper<K,V> mapper,
int cv)
Computes cross-validated metrics.
|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Map<K,V> upstreamMap,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Map<K,V> upstreamMap,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
Constructor and Description |
---|
CacheBasedLabelPairCursor(IgniteCache<K,V> upstreamCache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
Model<Vector,L> mdl)
Constructs a new instance of cache based truth with prediction cursor.
|
CacheBasedLabelPairCursor(IgniteCache<K,V> upstreamCache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
Model<Vector,L> mdl)
Constructs a new instance of cache based truth with prediction cursor.
|
CacheBasedLabelPairCursor(IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
Model<Vector,L> mdl)
Constructs a new instance of cache based truth with prediction cursor.
|
CacheBasedLabelPairCursor(IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
Model<Vector,L> mdl)
Constructs a new instance of cache based truth with prediction cursor.
|
LocalLabelPairCursor(Map<K,V> upstreamMap,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
Model<Vector,L> mdl)
Constructs a new instance of local truth with prediction cursor.
|
LocalLabelPairCursor(Map<K,V> upstreamMap,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
Model<Vector,L> mdl)
Constructs a new instance of local truth with prediction cursor.
|
Modifier and Type | Method and Description |
---|---|
static <L,K,V> double |
Evaluator.evaluate(IgniteCache<K,V> dataCache,
IgniteBiPredicate<K,V> filter,
Model<Vector,L> mdl,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
Accuracy<L> metric)
Computes the given metric on the given cache.
|
static <L,K,V> double |
Evaluator.evaluate(IgniteCache<K,V> dataCache,
IgniteBiPredicate<K,V> filter,
Model<Vector,L> mdl,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
Accuracy<L> metric)
Computes the given metric on the given cache.
|
static <L,K,V> double |
Evaluator.evaluate(IgniteCache<K,V> dataCache,
Model<Vector,L> mdl,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
Accuracy<L> metric)
Computes the given metric on the given cache.
|
static <L,K,V> double |
Evaluator.evaluate(IgniteCache<K,V> dataCache,
Model<Vector,L> mdl,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
Accuracy<L> metric)
Computes the given metric on the given cache.
|
Constructor and Description |
---|
LabeledDatasetPartitionDataBuilderOnHeap(IgniteBiFunction<K,V,Vector> xExtractor,
IgniteBiFunction<K,V,Double> yExtractor)
Constructs a new instance of SVM partition data builder.
|
LabeledDatasetPartitionDataBuilderOnHeap(IgniteBiFunction<K,V,Vector> xExtractor,
IgniteBiFunction<K,V,Double> yExtractor)
Constructs a new instance of SVM partition data builder.
|
LabelPartitionDataBuilderOnHeap(IgniteBiFunction<K,V,Double> yExtractor)
Constructs a new instance of Label partition data builder.
|
Modifier and Type | Method and Description |
---|---|
<K,V> SVMLinearMultiClassClassificationModel |
SVMLinearMultiClassClassificationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> SVMLinearMultiClassClassificationModel |
SVMLinearMultiClassClassificationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> SVMLinearBinaryClassificationModel |
SVMLinearBinaryClassificationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> SVMLinearBinaryClassificationModel |
SVMLinearBinaryClassificationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
protected <K,V> SVMLinearBinaryClassificationModel |
SVMLinearBinaryClassificationTrainer.updateModel(SVMLinearBinaryClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
protected <K,V> SVMLinearBinaryClassificationModel |
SVMLinearBinaryClassificationTrainer.updateModel(SVMLinearBinaryClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> SVMLinearMultiClassClassificationModel |
SVMLinearMultiClassClassificationTrainer.updateModel(SVMLinearMultiClassClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> SVMLinearMultiClassClassificationModel |
SVMLinearMultiClassClassificationTrainer.updateModel(SVMLinearMultiClassClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
abstract <K,V> M |
DatasetTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Trains model based on the specified data.
|
abstract <K,V> M |
DatasetTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(Map<K,V> data,
IgniteBiPredicate<K,V> filter,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(Map<K,V> data,
IgniteBiPredicate<K,V> filter,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(Map<K,V> data,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(Map<K,V> data,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.update(M mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then
trainer updates model in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then
trainer updates model in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Map<K,V> data,
IgniteBiPredicate<K,V> filter,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Map<K,V> data,
IgniteBiPredicate<K,V> filter,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Map<K,V> data,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Map<K,V> data,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
protected abstract <K,V> M |
DatasetTrainer.updateModel(M mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
protected abstract <K,V> M |
DatasetTrainer.updateModel(M mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> DecisionTreeNode |
DecisionTree.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> DecisionTreeNode |
DecisionTree.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> DecisionTreeNode |
DecisionTree.updateModel(DecisionTreeNode mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains new model based on dataset because there is no valid approach to update decision trees.
|
<K,V> DecisionTreeNode |
DecisionTree.updateModel(DecisionTreeNode mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains new model based on dataset because there is no valid approach to update decision trees.
|
Modifier and Type | Method and Description |
---|---|
<K,V> List<Model<Vector,Double>> |
GDBOnTreesLearningStrategy.update(GDBTrainer.GDBModel mdlToUpdate,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then
trainer updates model in according to new data and return new model.
|
<K,V> List<Model<Vector,Double>> |
GDBOnTreesLearningStrategy.update(GDBTrainer.GDBModel mdlToUpdate,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then
trainer updates model in according to new data and return new model.
|
Constructor and Description |
---|
DecisionTreeDataBuilder(IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor,
boolean buildIdx)
Constructs a new instance of decision tree data builder.
|
DecisionTreeDataBuilder(IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor,
boolean buildIdx)
Constructs a new instance of decision tree data builder.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ModelsComposition |
RandomForestTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> ModelsComposition |
RandomForestTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
protected <K,V> ModelsComposition |
RandomForestTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
protected <K,V> ModelsComposition |
RandomForestTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Follow @ApacheIgnite
Ignite Database and Caching Platform : ver. 2.7.2 Release Date : February 6 2019