public class LogRegressionMultiClassTrainer<P extends Serializable> extends SingleLabelDatasetTrainer<LogRegressionMultiClassModel>
DatasetTrainer.EmptyDatasetException
environment
Constructor and Description |
---|
LogRegressionMultiClassTrainer() |
Modifier and Type | Method and Description |
---|---|
protected boolean |
checkState(LogRegressionMultiClassModel mdl) |
<K,V> LogRegressionMultiClassModel |
fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
int |
getAmountOfIterations()
Get the amount of outer iterations of SGD algorithm.
|
int |
getAmountOfLocIterations()
Get the amount of local iterations.
|
double |
getBatchSize()
Get the batch size.
|
UpdatesStrategy |
getUpdatesStgy()
Get the update strategy.
|
long |
seed()
Get the seed for random generator.
|
<K,V> LogRegressionMultiClassModel |
updateModel(LogRegressionMultiClassModel newMdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
LogRegressionMultiClassTrainer |
withAmountOfIterations(int amountOfIterations)
Set up the amount of outer iterations.
|
LogRegressionMultiClassTrainer |
withAmountOfLocIterations(int amountOfLocIterations)
Set up the amount of local iterations of SGD algorithm.
|
LogRegressionMultiClassTrainer |
withBatchSize(int batchSize)
Set up the regularization parameter.
|
LogRegressionMultiClassTrainer |
withSeed(long seed)
Set up the random seed parameter.
|
LogRegressionMultiClassTrainer |
withUpdatesStgy(UpdatesStrategy updatesStgy)
Set up the updates strategy.
|
fit, fit, fit, fit, getLastTrainedModelOrThrowEmptyDatasetException, setEnvironment, update, update, update, update, update
public <K,V> LogRegressionMultiClassModel fit(DatasetBuilder<K,V> datasetBuilder, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,Double> lbExtractor)
fit
in class DatasetTrainer<LogRegressionMultiClassModel,Double>
K
- Type of a key in upstream
data.V
- Type of a value in upstream
data.datasetBuilder
- Dataset builder.featureExtractor
- Feature extractor.lbExtractor
- Label extractor.public <K,V> LogRegressionMultiClassModel updateModel(LogRegressionMultiClassModel newMdl, DatasetBuilder<K,V> datasetBuilder, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,Double> lbExtractor)
updateModel
in class DatasetTrainer<LogRegressionMultiClassModel,Double>
K
- Type of a key in upstream
data.V
- Type of a value in upstream
data.newMdl
- Learned model.datasetBuilder
- Dataset builder.featureExtractor
- Feature extractor.lbExtractor
- Label extractor.protected boolean checkState(LogRegressionMultiClassModel mdl)
checkState
in class DatasetTrainer<LogRegressionMultiClassModel,Double>
mdl
- Model.public LogRegressionMultiClassTrainer withBatchSize(int batchSize)
batchSize
- The size of learning batch.public double getBatchSize()
public int getAmountOfIterations()
public LogRegressionMultiClassTrainer withAmountOfIterations(int amountOfIterations)
amountOfIterations
- The parameter value.public int getAmountOfLocIterations()
public LogRegressionMultiClassTrainer withAmountOfLocIterations(int amountOfLocIterations)
amountOfLocIterations
- The parameter value.public LogRegressionMultiClassTrainer withSeed(long seed)
seed
- Seed for random generator.public long seed()
public LogRegressionMultiClassTrainer withUpdatesStgy(UpdatesStrategy updatesStgy)
updatesStgy
- Update strategy.public UpdatesStrategy getUpdatesStgy()
Follow @ApacheIgnite
Ignite Database and Caching Platform : ver. 2.7.2 Release Date : February 6 2019