M
- Type of model.L
- Type of a label (truth or prediction).K
- Type of a key in upstream
data.V
- Type of a value in upstream
data.public class CrossValidation<M extends Model<Vector,L>,L,K,V> extends Object
Constructor and Description |
---|
CrossValidation() |
Modifier and Type | Method and Description |
---|---|
double[] |
score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
double[] |
score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
CrossValidationResult |
score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv,
ParamGrid paramGrid)
Computes cross-validated metrics with a passed parameter grid.
|
double[] |
score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
UniformMapper<K,V> mapper,
int cv)
Computes cross-validated metrics.
|
double[] |
score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Map<K,V> upstreamMap,
IgniteBiPredicate<K,V> filter,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
double[] |
score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Map<K,V> upstreamMap,
IgniteBiPredicate<K,V> filter,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
UniformMapper<K,V> mapper,
int cv)
Computes cross-validated metrics.
|
double[] |
score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Map<K,V> upstreamMap,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
public double[] score(DatasetTrainer<M,L> trainer, Metric<L> scoreCalculator, Ignite ignite, IgniteCache<K,V> upstreamCache, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,L> lbExtractor, int cv)
trainer
- Trainer of the model.scoreCalculator
- Score calculator.ignite
- Ignite instance.upstreamCache
- Ignite cache with upstream
data.featureExtractor
- Feature extractor.lbExtractor
- Label extractor.cv
- Number of folds.public double[] score(DatasetTrainer<M,L> trainer, Metric<L> scoreCalculator, Ignite ignite, IgniteCache<K,V> upstreamCache, IgniteBiPredicate<K,V> filter, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,L> lbExtractor, int cv)
trainer
- Trainer of the model.scoreCalculator
- Base score calculator.ignite
- Ignite instance.upstreamCache
- Ignite cache with upstream
data.filter
- Base upstream
data filter.featureExtractor
- Feature extractor.lbExtractor
- Label extractor.cv
- Number of folds.public CrossValidationResult score(DatasetTrainer<M,L> trainer, Metric<L> scoreCalculator, Ignite ignite, IgniteCache<K,V> upstreamCache, IgniteBiPredicate<K,V> filter, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,L> lbExtractor, int cv, ParamGrid paramGrid)
trainer
- Trainer of the model.scoreCalculator
- Base score calculator.ignite
- Ignite instance.upstreamCache
- Ignite cache with upstream
data.filter
- Base upstream
data filter.featureExtractor
- Feature extractor.lbExtractor
- Label extractor.cv
- Number of folds.paramGrid
- Parameter grid.public double[] score(DatasetTrainer<M,L> trainer, Metric<L> scoreCalculator, Ignite ignite, IgniteCache<K,V> upstreamCache, IgniteBiPredicate<K,V> filter, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,L> lbExtractor, UniformMapper<K,V> mapper, int cv)
trainer
- Trainer of the model.scoreCalculator
- Base score calculator.ignite
- Ignite instance.upstreamCache
- Ignite cache with upstream
data.filter
- Base upstream
data filter.featureExtractor
- Feature extractor.lbExtractor
- Label extractor.mapper
- Mapper used to map a key-value pair to a point on the segment (0, 1).cv
- Number of folds.public double[] score(DatasetTrainer<M,L> trainer, Metric<L> scoreCalculator, Map<K,V> upstreamMap, int parts, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,L> lbExtractor, int cv)
trainer
- Trainer of the model.scoreCalculator
- Base score calculator.upstreamMap
- Map with upstream
data.parts
- Number of partitions.featureExtractor
- Feature extractor.lbExtractor
- Label extractor.cv
- Number of folds.public double[] score(DatasetTrainer<M,L> trainer, Metric<L> scoreCalculator, Map<K,V> upstreamMap, IgniteBiPredicate<K,V> filter, int parts, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,L> lbExtractor, int cv)
trainer
- Trainer of the model.scoreCalculator
- Base score calculator.upstreamMap
- Map with upstream
data.filter
- Base upstream
data filter.parts
- Number of partitions.featureExtractor
- Feature extractor.lbExtractor
- Label extractor.cv
- Number of folds.public double[] score(DatasetTrainer<M,L> trainer, Metric<L> scoreCalculator, Map<K,V> upstreamMap, IgniteBiPredicate<K,V> filter, int parts, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,L> lbExtractor, UniformMapper<K,V> mapper, int cv)
trainer
- Trainer of the model.scoreCalculator
- Base score calculator.upstreamMap
- Map with upstream
data.filter
- Base upstream
data filter.parts
- Number of partitions.featureExtractor
- Feature extractor.lbExtractor
- Label extractor.mapper
- Mapper used to map a key-value pair to a point on the segment (0, 1).cv
- Number of folds.
Follow @ApacheIgnite
Ignite Database and Caching Platform : ver. 2.7.2 Release Date : February 6 2019