M - Type of model.L - Type of a label (truth or prediction).K - Type of a key in upstream data.V - Type of a value in upstream data.public class CrossValidation<M extends Model<Vector,L>,L,K,V> extends Object
| Constructor and Description |
|---|
CrossValidation() |
| Modifier and Type | Method and Description |
|---|---|
double[] |
score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
double[] |
score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
CrossValidationResult |
score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv,
ParamGrid paramGrid)
Computes cross-validated metrics with a passed parameter grid.
|
double[] |
score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
UniformMapper<K,V> mapper,
int cv)
Computes cross-validated metrics.
|
double[] |
score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Map<K,V> upstreamMap,
IgniteBiPredicate<K,V> filter,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
double[] |
score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Map<K,V> upstreamMap,
IgniteBiPredicate<K,V> filter,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
UniformMapper<K,V> mapper,
int cv)
Computes cross-validated metrics.
|
double[] |
score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Map<K,V> upstreamMap,
int parts,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
public double[] score(DatasetTrainer<M,L> trainer, Metric<L> scoreCalculator, Ignite ignite, IgniteCache<K,V> upstreamCache, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,L> lbExtractor, int cv)
trainer - Trainer of the model.scoreCalculator - Score calculator.ignite - Ignite instance.upstreamCache - Ignite cache with upstream data.featureExtractor - Feature extractor.lbExtractor - Label extractor.cv - Number of folds.public double[] score(DatasetTrainer<M,L> trainer, Metric<L> scoreCalculator, Ignite ignite, IgniteCache<K,V> upstreamCache, IgniteBiPredicate<K,V> filter, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,L> lbExtractor, int cv)
trainer - Trainer of the model.scoreCalculator - Base score calculator.ignite - Ignite instance.upstreamCache - Ignite cache with upstream data.filter - Base upstream data filter.featureExtractor - Feature extractor.lbExtractor - Label extractor.cv - Number of folds.public CrossValidationResult score(DatasetTrainer<M,L> trainer, Metric<L> scoreCalculator, Ignite ignite, IgniteCache<K,V> upstreamCache, IgniteBiPredicate<K,V> filter, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,L> lbExtractor, int cv, ParamGrid paramGrid)
trainer - Trainer of the model.scoreCalculator - Base score calculator.ignite - Ignite instance.upstreamCache - Ignite cache with upstream data.filter - Base upstream data filter.featureExtractor - Feature extractor.lbExtractor - Label extractor.cv - Number of folds.paramGrid - Parameter grid.public double[] score(DatasetTrainer<M,L> trainer, Metric<L> scoreCalculator, Ignite ignite, IgniteCache<K,V> upstreamCache, IgniteBiPredicate<K,V> filter, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,L> lbExtractor, UniformMapper<K,V> mapper, int cv)
trainer - Trainer of the model.scoreCalculator - Base score calculator.ignite - Ignite instance.upstreamCache - Ignite cache with upstream data.filter - Base upstream data filter.featureExtractor - Feature extractor.lbExtractor - Label extractor.mapper - Mapper used to map a key-value pair to a point on the segment (0, 1).cv - Number of folds.public double[] score(DatasetTrainer<M,L> trainer, Metric<L> scoreCalculator, Map<K,V> upstreamMap, int parts, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,L> lbExtractor, int cv)
trainer - Trainer of the model.scoreCalculator - Base score calculator.upstreamMap - Map with upstream data.parts - Number of partitions.featureExtractor - Feature extractor.lbExtractor - Label extractor.cv - Number of folds.public double[] score(DatasetTrainer<M,L> trainer, Metric<L> scoreCalculator, Map<K,V> upstreamMap, IgniteBiPredicate<K,V> filter, int parts, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,L> lbExtractor, int cv)
trainer - Trainer of the model.scoreCalculator - Base score calculator.upstreamMap - Map with upstream data.filter - Base upstream data filter.parts - Number of partitions.featureExtractor - Feature extractor.lbExtractor - Label extractor.cv - Number of folds.public double[] score(DatasetTrainer<M,L> trainer, Metric<L> scoreCalculator, Map<K,V> upstreamMap, IgniteBiPredicate<K,V> filter, int parts, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,L> lbExtractor, UniformMapper<K,V> mapper, int cv)
trainer - Trainer of the model.scoreCalculator - Base score calculator.upstreamMap - Map with upstream data.filter - Base upstream data filter.parts - Number of partitions.featureExtractor - Feature extractor.lbExtractor - Label extractor.mapper - Mapper used to map a key-value pair to a point on the segment (0, 1).cv - Number of folds.
Follow @ApacheIgnite
Ignite Database and Caching Platform : ver. 2.7.2 Release Date : February 6 2019