public class SVMLinearMultiClassClassificationTrainer extends SingleLabelDatasetTrainer<SVMLinearMultiClassClassificationModel>
DatasetTrainer.EmptyDatasetException
environment
Constructor and Description |
---|
SVMLinearMultiClassClassificationTrainer() |
Modifier and Type | Method and Description |
---|---|
protected boolean |
checkState(SVMLinearMultiClassClassificationModel mdl) |
<K,V> SVMLinearMultiClassClassificationModel |
fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
int |
getAmountOfIterations()
Gets the amount of outer iterations of SCDA algorithm.
|
int |
getAmountOfLocIterations()
Gets the amount of local iterations of SCDA algorithm.
|
double |
getLambda()
Get the regularization lambda.
|
long |
getSeed()
Gets the seed number.
|
<K,V> SVMLinearMultiClassClassificationModel |
updateModel(SVMLinearMultiClassClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
SVMLinearMultiClassClassificationTrainer |
withAmountOfIterations(int amountOfIterations)
Set up the amount of outer iterations of SCDA algorithm.
|
SVMLinearMultiClassClassificationTrainer |
withAmountOfLocIterations(int amountOfLocIterations)
Set up the amount of local iterations of SCDA algorithm.
|
SVMLinearMultiClassClassificationTrainer |
withLambda(double lambda)
Set up the regularization parameter.
|
SVMLinearMultiClassClassificationTrainer |
withSeed(long seed)
Set up the seed.
|
fit, fit, fit, fit, getLastTrainedModelOrThrowEmptyDatasetException, setEnvironment, update, update, update, update, update
public SVMLinearMultiClassClassificationTrainer()
public <K,V> SVMLinearMultiClassClassificationModel fit(DatasetBuilder<K,V> datasetBuilder, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,Double> lbExtractor)
fit
in class DatasetTrainer<SVMLinearMultiClassClassificationModel,Double>
K
- Type of a key in upstream
data.V
- Type of a value in upstream
data.datasetBuilder
- Dataset builder.featureExtractor
- Feature extractor.lbExtractor
- Label extractor.public <K,V> SVMLinearMultiClassClassificationModel updateModel(SVMLinearMultiClassClassificationModel mdl, DatasetBuilder<K,V> datasetBuilder, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,Double> lbExtractor)
updateModel
in class DatasetTrainer<SVMLinearMultiClassClassificationModel,Double>
K
- Type of a key in upstream
data.V
- Type of a value in upstream
data.mdl
- Learned model.datasetBuilder
- Dataset builder.featureExtractor
- Feature extractor.lbExtractor
- Label extractor.protected boolean checkState(SVMLinearMultiClassClassificationModel mdl)
checkState
in class DatasetTrainer<SVMLinearMultiClassClassificationModel,Double>
mdl
- Model.public SVMLinearMultiClassClassificationTrainer withLambda(double lambda)
lambda
- The regularization parameter. Should be more than 0.0.public double getLambda()
public int getAmountOfIterations()
public SVMLinearMultiClassClassificationTrainer withAmountOfIterations(int amountOfIterations)
amountOfIterations
- The parameter value.public int getAmountOfLocIterations()
public SVMLinearMultiClassClassificationTrainer withAmountOfLocIterations(int amountOfLocIterations)
amountOfLocIterations
- The parameter value.public long getSeed()
public SVMLinearMultiClassClassificationTrainer withSeed(long seed)
seed
- The parameter value.
Follow @ApacheIgnite
Ignite Database and Caching Platform : ver. 2.7.2 Release Date : February 6 2019