Package | Description |
---|---|
org.apache.ignite.ml.clustering.kmeans |
Contains kMeans clustering algorithm.
|
org.apache.ignite.ml.composition |
Contains classes for ensemble of models implementation.
|
org.apache.ignite.ml.composition.boosting |
Contains Gradient Boosting regression and classification abstract classes
allowing regressor type selecting in child classes.
|
org.apache.ignite.ml.composition.boosting.convergence |
Package contains implementation of convergency checking algorithms for gradient boosting.
|
org.apache.ignite.ml.composition.boosting.convergence.mean |
Contains implementation of convergence checking computer by mean of absolute value of errors in dataset.
|
org.apache.ignite.ml.composition.boosting.convergence.median |
Contains implementation of convergence checking computer by median of medians of errors in dataset.
|
org.apache.ignite.ml.composition.boosting.convergence.simple |
Contains implementation of Stub for convergence checking.
|
org.apache.ignite.ml.dataset |
Base package for machine learning dataset classes.
|
org.apache.ignite.ml.dataset.impl.cache |
Base package for cache based implementation of machine learning dataset.
|
org.apache.ignite.ml.dataset.impl.local |
Base package for local implementation of machine learning dataset.
|
org.apache.ignite.ml.knn |
Contains main APIs for kNN algorithms.
|
org.apache.ignite.ml.knn.ann |
Contains main APIs for ANN classification algorithms.
|
org.apache.ignite.ml.knn.classification |
Contains main APIs for kNN classification algorithms.
|
org.apache.ignite.ml.knn.regression |
Contains helper classes for kNN regression algorithms.
|
org.apache.ignite.ml.math.isolve.lsqr |
Contains LSQR algorithm implementation.
|
org.apache.ignite.ml.nn |
Contains neural networks and related classes.
|
org.apache.ignite.ml.preprocessing |
Base package for machine learning preprocessing classes.
|
org.apache.ignite.ml.preprocessing.binarization |
Contains binarization preprocessor.
|
org.apache.ignite.ml.preprocessing.encoding |
Contains encoding preprocessors.
|
org.apache.ignite.ml.preprocessing.imputing |
Contains Imputer preprocessor.
|
org.apache.ignite.ml.preprocessing.maxabsscaling |
Contains Max Abs Scaler preprocessor.
|
org.apache.ignite.ml.preprocessing.minmaxscaling |
Contains Min Max Scaler preprocessor.
|
org.apache.ignite.ml.preprocessing.normalization |
Contains Normalizer preprocessor.
|
org.apache.ignite.ml.regressions.linear |
Contains various linear regressions.
|
org.apache.ignite.ml.regressions.logistic.binomial |
Contains binomial logistic regression.
|
org.apache.ignite.ml.regressions.logistic.multiclass |
Contains multi-class logistic regression.
|
org.apache.ignite.ml.svm |
Contains main APIs for SVM(support vector machines) algorithms.
|
org.apache.ignite.ml.trainers |
Contains model trainers.
|
org.apache.ignite.ml.tree |
Root package for decision trees.
|
org.apache.ignite.ml.tree.boosting |
Contains implementation of gradient boosting on trees.
|
org.apache.ignite.ml.tree.randomforest |
Contains random forest implementation classes.
|
Modifier and Type | Method and Description |
---|---|
<K,V> KMeansModel |
KMeansTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
protected <K,V> KMeansModel |
KMeansTrainer.updateModel(KMeansModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ModelsComposition |
BaggingModelTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> ModelsComposition |
BaggingModelTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Learn new models on dataset and create new Compositions over them and already learned models.
|
Modifier and Type | Method and Description |
---|---|
protected <V,K> IgniteBiTuple<Double,Long> |
GDBTrainer.computeInitialValue(DatasetBuilder<K,V> builder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Compute mean value of label as first approximation.
|
<K,V> ModelsComposition |
GDBTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
protected <V,K> boolean |
GDBBinaryClassifierTrainer.learnLabels(DatasetBuilder<K,V> builder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lExtractor)
Defines unique labels in dataset if need (useful in case of classification).
|
protected abstract <V,K> boolean |
GDBTrainer.learnLabels(DatasetBuilder<K,V> builder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lExtractor)
Defines unique labels in dataset if need (useful in case of classification).
|
protected <V,K> boolean |
GDBRegressionTrainer.learnLabels(DatasetBuilder<K,V> builder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lExtractor)
Defines unique labels in dataset if need (useful in case of classification).
|
<K,V> List<Model<Vector,Double>> |
GDBLearningStrategy.learnModels(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Implementation of gradient boosting iterations.
|
<K,V> List<Model<Vector,Double>> |
GDBLearningStrategy.update(GDBTrainer.GDBModel mdlToUpdate,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then
trainer updates model in according to new data and return new model.
|
protected <K,V> ModelsComposition |
GDBTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
abstract <K,V> ConvergenceChecker<K,V> |
ConvergenceCheckerFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Create an instance of ConvergenceChecker.
|
boolean |
ConvergenceChecker.isConverged(DatasetBuilder<K,V> datasetBuilder,
ModelsComposition currMdl)
Checks convergency on dataset.
|
Constructor and Description |
---|
ConvergenceChecker(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor,
double precision)
Constructs an instance of ConvergenceChecker.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ConvergenceChecker<K,V> |
MeanAbsValueConvergenceCheckerFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Create an instance of ConvergenceChecker.
|
Constructor and Description |
---|
MeanAbsValueConvergenceChecker(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor,
double precision)
Creates an intance of MeanAbsValueConvergenceChecker.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ConvergenceChecker<K,V> |
MedianOfMedianConvergenceCheckerFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Create an instance of ConvergenceChecker.
|
Constructor and Description |
---|
MedianOfMedianConvergenceChecker(long sampleSize,
IgniteFunction<Double,Double> lblMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> fExtr,
IgniteBiFunction<K,V,Double> lbExtr,
double precision)
Creates an instance of MedianOfMedianConvergenceChecker.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ConvergenceChecker<K,V> |
ConvergenceCheckerStubFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Create an instance of ConvergenceChecker.
|
boolean |
ConvergenceCheckerStub.isConverged(DatasetBuilder<K,V> datasetBuilder,
ModelsComposition currMdl)
Checks convergency on dataset.
|
Constructor and Description |
---|
ConvergenceCheckerStub(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Creates an intance of ConvergenceCheckerStub.
|
Modifier and Type | Method and Description |
---|---|
DatasetBuilder<K,V> |
DatasetBuilder.withFilter(IgniteBiPredicate<K,V> filterToAdd)
Returns new instance of DatasetBuilder using conjunction of internal filter and
filterToAdd . |
Modifier and Type | Method and Description |
---|---|
static <K,V,C extends Serializable,D extends AutoCloseable> |
DatasetFactory.create(DatasetBuilder<K,V> datasetBuilder,
PartitionContextBuilder<K,V,C> partCtxBuilder,
PartitionDataBuilder<K,V,C,D> partDataBuilder)
Creates a new instance of distributed dataset using the specified
partCtxBuilder and
partDataBuilder . |
static <K,V> SimpleDataset<EmptyContext> |
DatasetFactory.createSimpleDataset(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor)
Creates a new instance of distributed
SimpleDataset using the specified featureExtractor . |
static <K,V,C extends Serializable> |
DatasetFactory.createSimpleDataset(DatasetBuilder<K,V> datasetBuilder,
PartitionContextBuilder<K,V,C> partCtxBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor)
Creates a new instance of distributed
SimpleDataset using the specified partCtxBuilder and
featureExtractor . |
static <K,V> SimpleLabeledDataset<EmptyContext> |
DatasetFactory.createSimpleLabeledDataset(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of distributed
SimpleLabeledDataset using the specified featureExtractor
and lbExtractor . |
static <K,V,C extends Serializable> |
DatasetFactory.createSimpleLabeledDataset(DatasetBuilder<K,V> datasetBuilder,
PartitionContextBuilder<K,V,C> partCtxBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of distributed
SimpleLabeledDataset using the specified partCtxBuilder ,
featureExtractor and lbExtractor . |
Modifier and Type | Class and Description |
---|---|
class |
CacheBasedDatasetBuilder<K,V>
A dataset builder that makes
CacheBasedDataset . |
Modifier and Type | Method and Description |
---|---|
DatasetBuilder<K,V> |
CacheBasedDatasetBuilder.withFilter(IgniteBiPredicate<K,V> filterToAdd)
Returns new instance of DatasetBuilder using conjunction of internal filter and
filterToAdd . |
Modifier and Type | Class and Description |
---|---|
class |
LocalDatasetBuilder<K,V>
A dataset builder that makes
LocalDataset . |
Modifier and Type | Method and Description |
---|---|
DatasetBuilder<K,V> |
LocalDatasetBuilder.withFilter(IgniteBiPredicate<K,V> filterToAdd)
Returns new instance of DatasetBuilder using conjunction of internal filter and
filterToAdd . |
Modifier and Type | Method and Description |
---|---|
static <K,V> @Nullable Dataset<EmptyContext,LabeledVectorSet<Double,LabeledVector>> |
KNNUtils.buildDataset(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Builds dataset.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ANNClassificationModel |
ANNClassificationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
protected <K,V> ANNClassificationModel |
ANNClassificationTrainer.updateModel(ANNClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> KNNClassificationModel |
KNNClassificationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> KNNClassificationModel |
KNNClassificationTrainer.updateModel(KNNClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> KNNRegressionModel |
KNNRegressionTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> KNNRegressionModel |
KNNRegressionTrainer.updateModel(KNNRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Constructor and Description |
---|
LSQROnHeap(DatasetBuilder<K,V> datasetBuilder,
PartitionDataBuilder<K,V,LSQRPartitionContext,SimpleLabeledDatasetData> partDataBuilder)
Constructs a new instance of OnHeap LSQR algorithm implementation.
|
Modifier and Type | Method and Description |
---|---|
<K,V> MultilayerPerceptron |
MLPTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Trains model based on the specified data.
|
protected <K,V> MultilayerPerceptron |
MLPTrainer.updateModel(MultilayerPerceptron lastLearnedMdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
IgniteBiFunction<K,V,R> |
PreprocessingTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,T> basePreprocessor)
Fits preprocessor.
|
Modifier and Type | Method and Description |
---|---|
BinarizationPreprocessor<K,V> |
BinarizationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Fits preprocessor.
|
Modifier and Type | Method and Description |
---|---|
EncoderPreprocessor<K,V> |
EncoderTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Object[]> basePreprocessor)
Fits preprocessor.
|
Modifier and Type | Method and Description |
---|---|
ImputerPreprocessor<K,V> |
ImputerTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Fits preprocessor.
|
Modifier and Type | Method and Description |
---|---|
MaxAbsScalerPreprocessor<K,V> |
MaxAbsScalerTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Fits preprocessor.
|
Modifier and Type | Method and Description |
---|---|
MinMaxScalerPreprocessor<K,V> |
MinMaxScalerTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Fits preprocessor.
|
Modifier and Type | Method and Description |
---|---|
NormalizationPreprocessor<K,V> |
NormalizationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> basePreprocessor)
Fits preprocessor.
|
Modifier and Type | Method and Description |
---|---|
<K,V> LinearRegressionModel |
LinearRegressionLSQRTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> LinearRegressionModel |
LinearRegressionSGDTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
protected <K,V> LinearRegressionModel |
LinearRegressionLSQRTrainer.updateModel(LinearRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
protected <K,V> LinearRegressionModel |
LinearRegressionSGDTrainer.updateModel(LinearRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> LogisticRegressionModel |
LogisticRegressionSGDTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
protected <K,V> LogisticRegressionModel |
LogisticRegressionSGDTrainer.updateModel(LogisticRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> LogRegressionMultiClassModel |
LogRegressionMultiClassTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> LogRegressionMultiClassModel |
LogRegressionMultiClassTrainer.updateModel(LogRegressionMultiClassModel newMdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> SVMLinearMultiClassClassificationModel |
SVMLinearMultiClassClassificationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> SVMLinearBinaryClassificationModel |
SVMLinearBinaryClassificationTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
protected <K,V> SVMLinearBinaryClassificationModel |
SVMLinearBinaryClassificationTrainer.updateModel(SVMLinearBinaryClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> SVMLinearMultiClassClassificationModel |
SVMLinearMultiClassClassificationTrainer.updateModel(SVMLinearMultiClassClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
abstract <K,V> M |
DatasetTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.update(M mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then
trainer updates model in according to new data and return new model.
|
protected abstract <K,V> M |
DatasetTrainer.updateModel(M mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> DecisionTreeNode |
DecisionTree.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
<K,V> DecisionTreeNode |
DecisionTree.updateModel(DecisionTreeNode mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains new model based on dataset because there is no valid approach to update decision trees.
|
Modifier and Type | Method and Description |
---|---|
<K,V> List<Model<Vector,Double>> |
GDBOnTreesLearningStrategy.update(GDBTrainer.GDBModel mdlToUpdate,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then
trainer updates model in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ModelsComposition |
RandomForestTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
protected <K,V> ModelsComposition |
RandomForestTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Follow @ApacheIgnite
Ignite Database and Caching Platform : ver. 2.7.2 Release Date : February 6 2019