Package | Description |
---|---|
org.apache.ignite.ml.tree.randomforest |
Contains random forest implementation classes.
|
org.apache.ignite.ml.tree.randomforest.data.impurity |
Contains implementation of impurity computers based on histograms.
|
org.apache.ignite.ml.tree.randomforest.data.statistics |
Contains implementation of statistics computers for Random Forest.
|
Modifier and Type | Method and Description |
---|---|
protected ArrayList<TreeRoot> |
RandomForestTrainer.initTrees(Queue<TreeNode> treesQueue)
Creates list of trees.
|
Modifier and Type | Method and Description |
---|---|
protected ModelsComposition |
RandomForestRegressionTrainer.buildComposition(List<TreeRoot> models)
Returns composition of built trees.
|
protected ModelsComposition |
RandomForestClassifierTrainer.buildComposition(List<TreeRoot> models)
Returns composition of built trees.
|
protected abstract ModelsComposition |
RandomForestTrainer.buildComposition(List<TreeRoot> models)
Returns composition of built trees.
|
Modifier and Type | Method and Description |
---|---|
Map<NodeId,ImpurityHistogramsComputer.NodeImpurityHistograms<S>> |
ImpurityHistogramsComputer.aggregateImpurityStatistics(ArrayList<TreeRoot> roots,
Map<Integer,BucketMeta> histMeta,
Map<NodeId,TreeNode> nodesToLearn,
Dataset<EmptyContext,BootstrappedDatasetPartition> dataset)
Computes histograms for each feature.
|
Modifier and Type | Method and Description |
---|---|
void |
LeafValuesComputer.setValuesForLeaves(ArrayList<TreeRoot> roots,
Dataset<EmptyContext,BootstrappedDatasetPartition> dataset)
Takes a list of all built trees and in one map-reduceImpurityStatistics step collect statistics for evaluating
leaf-values for each tree and sets values for leaves.
|
GridGain In-Memory Computing Platform : ver. 8.9.15 Release Date : December 3 2024