public class RandomForestClassifierTrainer extends RandomForestTrainer<ObjectHistogram<BootstrappedVector>,GiniHistogram,RandomForestClassifierTrainer>
DatasetTrainer.EmptyDatasetException
envBuilder, environment
Constructor and Description |
---|
RandomForestClassifierTrainer(List<FeatureMeta> meta)
Constructs an instance of RandomForestClassifierTrainer.
|
Modifier and Type | Method and Description |
---|---|
protected ModelsComposition |
buildComposition(List<TreeRoot> models)
Returns composition of built trees.
|
protected ImpurityHistogramsComputer<GiniHistogram> |
createImpurityHistogramsComputer()
Creates an instance of Histograms Computer corresponding to RF implementation.
|
protected LeafValuesComputer<ObjectHistogram<BootstrappedVector>> |
createLeafStatisticsAggregator()
Creates an instance of Leaf Statistics Aggregator corresponding to RF implementation.
|
protected boolean |
init(Dataset<EmptyContext,BootstrappedDatasetPartition> dataset)
Aggregates all unique labels from dataset and assigns integer id value for each label.
|
protected RandomForestClassifierTrainer |
instance() |
RandomForestClassifierTrainer |
withEnvironmentBuilder(LearningEnvironmentBuilder envBuilder)
Changes learning Environment.
|
fitWithInitializedDeployingContext, initTrees, isUpdateable, updateModel, withAmountOfTrees, withFeaturesCountSelectionStrgy, withMaxDepth, withMinImpurityDelta, withNodesToLearnSelectionStrgy, withSeed, withSubSampleSize
fit, fit, fit, fit, fit, fit, getLastTrainedModelOrThrowEmptyDatasetException, identityTrainer, learningEnvironment, update, update, update, update, update, withConvertedLabels
public RandomForestClassifierTrainer(List<FeatureMeta> meta)
meta
- Features meta.protected RandomForestClassifierTrainer instance()
instance
in class RandomForestTrainer<ObjectHistogram<BootstrappedVector>,GiniHistogram,RandomForestClassifierTrainer>
protected boolean init(Dataset<EmptyContext,BootstrappedDatasetPartition> dataset)
init
in class RandomForestTrainer<ObjectHistogram<BootstrappedVector>,GiniHistogram,RandomForestClassifierTrainer>
dataset
- Dataset.protected ModelsComposition buildComposition(List<TreeRoot> models)
buildComposition
in class RandomForestTrainer<ObjectHistogram<BootstrappedVector>,GiniHistogram,RandomForestClassifierTrainer>
models
- Models.protected ImpurityHistogramsComputer<GiniHistogram> createImpurityHistogramsComputer()
protected LeafValuesComputer<ObjectHistogram<BootstrappedVector>> createLeafStatisticsAggregator()
public RandomForestClassifierTrainer withEnvironmentBuilder(LearningEnvironmentBuilder envBuilder)
withEnvironmentBuilder
in class DatasetTrainer<ModelsComposition,Double>
envBuilder
- Learning environment builder.
GridGain In-Memory Computing Platform : ver. 8.9.15 Release Date : December 3 2024