S
- Type of basic impurity computer for feature.public abstract class ImpurityHistogramsComputer<S extends ImpurityComputer<BootstrappedVector,S>> extends Object implements Serializable
Modifier and Type | Class and Description |
---|---|
static class |
ImpurityHistogramsComputer.NodeImpurityHistograms<S extends ImpurityComputer<BootstrappedVector,S>>
Class represents per feature statistics for impurity computing.
|
Constructor and Description |
---|
ImpurityHistogramsComputer() |
Modifier and Type | Method and Description |
---|---|
Map<NodeId,ImpurityHistogramsComputer.NodeImpurityHistograms<S>> |
aggregateImpurityStatistics(ArrayList<TreeRoot> roots,
Map<Integer,BucketMeta> histMeta,
Map<NodeId,TreeNode> nodesToLearn,
Dataset<EmptyContext,BootstrappedDatasetPartition> dataset)
Computes histograms for each feature.
|
protected abstract S |
createImpurityComputerForFeature(int sampleId,
BucketMeta meta)
Creates impurity computer in according to specific algorithm based on random forest (for example
GiniHistogram for classification). |
public Map<NodeId,ImpurityHistogramsComputer.NodeImpurityHistograms<S>> aggregateImpurityStatistics(ArrayList<TreeRoot> roots, Map<Integer,BucketMeta> histMeta, Map<NodeId,TreeNode> nodesToLearn, Dataset<EmptyContext,BootstrappedDatasetPartition> dataset)
roots
- Random forest roots.histMeta
- Histograms meta.nodesToLearn
- Nodes to learn.dataset
- Dataset.protected abstract S createImpurityComputerForFeature(int sampleId, BucketMeta meta)
GiniHistogram
for classification).sampleId
- Sample id.meta
- Bucket Meta.
GridGain In-Memory Computing Platform : ver. 8.9.14 Release Date : November 5 2024