Package | Description |
---|---|
org.apache.ignite |
Contains entry-point Ignite & HPC APIs.
|
org.apache.ignite.ml.dataset |
Base package for machine learning dataset classes.
|
org.apache.ignite.ml.dataset.impl.cache |
Base package for cache based implementation of machine learning dataset.
|
org.apache.ignite.ml.pipeline |
Contains Pipeline API.
|
org.apache.ignite.ml.preprocessing |
Base package for machine learning preprocessing classes.
|
org.apache.ignite.ml.selection.cv |
Root package for cross-validation algorithms.
|
org.apache.ignite.ml.selection.scoring.cursor |
Util classes used for score calculation.
|
org.apache.ignite.ml.selection.scoring.evaluator |
Package for model evaluator classes.
|
org.apache.ignite.ml.trainers |
Contains model trainers.
|
org.apache.ignite.springdata.repository.query |
Package includes classes that integrates with Apache Ignite SQL engine.
|
org.apache.ignite.springdata.repository.support |
Package contains supporting files required by Spring Data framework.
|
org.apache.ignite.springdata20.repository.query |
Package includes classes that integrates with Apache Ignite SQL engine.
|
org.apache.ignite.springdata20.repository.support |
Package contains supporting files required by Spring Data framework.
|
org.apache.ignite.stream |
Contains Ignite Streamer classes.
|
Modifier and Type | Method and Description |
---|---|
<K,V> IgniteCache<K,V> |
IgniteSpringBean.cache(@Nullable String name)
Gets an instance of
IgniteCache API. |
<K,V> IgniteCache<K,V> |
Ignite.cache(String name)
Gets an instance of
IgniteCache API. |
<K,V> IgniteCache<K,V> |
IgniteSpringBean.createCache(CacheConfiguration<K,V> cacheCfg)
Dynamically starts new cache with the given cache configuration.
|
<K,V> IgniteCache<K,V> |
Ignite.createCache(CacheConfiguration<K,V> cacheCfg)
Dynamically starts new cache with the given cache configuration.
|
<K,V> IgniteCache<K,V> |
IgniteSpringBean.createCache(CacheConfiguration<K,V> cacheCfg,
NearCacheConfiguration<K,V> nearCfg)
Dynamically starts new cache with the given cache configuration.
|
<K,V> IgniteCache<K,V> |
Ignite.createCache(CacheConfiguration<K,V> cacheCfg,
NearCacheConfiguration<K,V> nearCfg)
Dynamically starts new cache with the given cache configuration.
|
<K,V> IgniteCache<K,V> |
IgniteSpringBean.createCache(String cacheName)
Dynamically starts new cache using template configuration.
|
<K,V> IgniteCache<K,V> |
Ignite.createCache(String cacheName)
Dynamically starts new cache using template configuration.
|
<K,V> IgniteCache<K,V> |
IgniteSpringBean.createNearCache(String cacheName,
NearCacheConfiguration<K,V> nearCfg)
Starts a near cache on local node if cache was previously started with one of the
Ignite.createCache(CacheConfiguration) or Ignite.createCache(CacheConfiguration, NearCacheConfiguration)
methods. |
<K,V> IgniteCache<K,V> |
Ignite.createNearCache(String cacheName,
NearCacheConfiguration<K,V> nearCfg)
Starts a near cache on local node if cache was previously started with one of the
Ignite.createCache(CacheConfiguration) or Ignite.createCache(CacheConfiguration, NearCacheConfiguration)
methods. |
<K,V> IgniteCache<K,V> |
IgniteSpringBean.getOrCreateCache(CacheConfiguration<K,V> cacheCfg)
Gets existing cache with the given name or creates new one with the given configuration.
|
<K,V> IgniteCache<K,V> |
Ignite.getOrCreateCache(CacheConfiguration<K,V> cacheCfg)
Gets existing cache with the given name or creates new one with the given configuration.
|
<K,V> IgniteCache<K,V> |
IgniteSpringBean.getOrCreateCache(CacheConfiguration<K,V> cacheCfg,
NearCacheConfiguration<K,V> nearCfg)
Gets existing cache with the given cache configuration or creates one if it does not exist.
|
<K,V> IgniteCache<K,V> |
Ignite.getOrCreateCache(CacheConfiguration<K,V> cacheCfg,
NearCacheConfiguration<K,V> nearCfg)
Gets existing cache with the given cache configuration or creates one if it does not exist.
|
<K,V> IgniteCache<K,V> |
IgniteSpringBean.getOrCreateCache(String cacheName)
Gets existing cache with the given name or creates new one using template configuration.
|
<K,V> IgniteCache<K,V> |
Ignite.getOrCreateCache(String cacheName)
Gets existing cache with the given name or creates new one using template configuration.
|
<K,V> IgniteCache<K,V> |
IgniteSpringBean.getOrCreateNearCache(@Nullable String cacheName,
NearCacheConfiguration<K,V> nearCfg)
Gets existing near cache with the given name or creates a new one.
|
<K,V> IgniteCache<K,V> |
Ignite.getOrCreateNearCache(String cacheName,
NearCacheConfiguration<K,V> nearCfg)
Gets existing near cache with the given name or creates a new one.
|
<K1,V1> IgniteCache<K1,V1> |
IgniteCache.withAllowAtomicOpsInTx()
By default atomic operations are allowed in transaction.
|
IgniteCache<K,V> |
IgniteCache.withAsync()
Deprecated.
|
IgniteCache<K,V> |
IgniteCache.withExpiryPolicy(javax.cache.expiry.ExpiryPolicy plc)
Returns cache with the specified expired policy set.
|
<K1,V1> IgniteCache<K1,V1> |
IgniteCache.withKeepBinary()
Returns cache that will operate with binary objects.
|
IgniteCache<K,V> |
IgniteCache.withNoRetries() |
IgniteCache<K,V> |
IgniteCache.withPartitionRecover()
Gets an instance of
IgniteCache that will be allowed to execute cache operations (read, write)
regardless of partition loss policy. |
IgniteCache<K,V> |
IgniteCache.withSkipStore() |
Modifier and Type | Method and Description |
---|---|
Collection<IgniteCache> |
IgniteSpringBean.createCaches(Collection<CacheConfiguration> cacheCfgs)
Dynamically starts new caches with the given cache configurations.
|
Collection<IgniteCache> |
Ignite.createCaches(Collection<CacheConfiguration> cacheCfgs)
Dynamically starts new caches with the given cache configurations.
|
Collection<IgniteCache> |
IgniteSpringBean.getOrCreateCaches(Collection<CacheConfiguration> cacheCfgs)
Gets existing caches with the given name or created one with the given configuration.
|
Collection<IgniteCache> |
Ignite.getOrCreateCaches(Collection<CacheConfiguration> cacheCfgs)
Gets existing caches with the given name or created one with the given configuration.
|
Modifier and Type | Method and Description |
---|---|
static <K,V,C extends Serializable,D extends AutoCloseable> |
DatasetFactory.create(Ignite ignite,
IgniteCache<K,V> upstreamCache,
PartitionContextBuilder<K,V,C> partCtxBuilder,
PartitionDataBuilder<K,V,C,D> partDataBuilder)
Creates a new instance of distributed dataset using the specified
partCtxBuilder and
partDataBuilder . |
static <K,V> SimpleDataset<EmptyContext> |
DatasetFactory.createSimpleDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiFunction<K,V,Vector> featureExtractor)
Creates a new instance of distributed
SimpleDataset using the specified featureExtractor . |
static <K,V,C extends Serializable> |
DatasetFactory.createSimpleDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
PartitionContextBuilder<K,V,C> partCtxBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor)
Creates a new instance of distributed
SimpleDataset using the specified partCtxBuilder and
featureExtractor . |
static <K,V> SimpleLabeledDataset<EmptyContext> |
DatasetFactory.createSimpleLabeledDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of distributed
SimpleLabeledDataset using the specified featureExtractor
and lbExtractor . |
static <K,V,C extends Serializable> |
DatasetFactory.createSimpleLabeledDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
PartitionContextBuilder<K,V,C> partCtxBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,double[]> lbExtractor)
Creates a new instance of distributed
SimpleLabeledDataset using the specified partCtxBuilder ,
featureExtractor and lbExtractor . |
Modifier and Type | Method and Description |
---|---|
IgniteCache<Integer,C> |
CacheBasedDataset.getDatasetCache() |
IgniteCache<K,V> |
CacheBasedDataset.getUpstreamCache() |
Constructor and Description |
---|
CacheBasedDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteCache<Integer,C> datasetCache,
PartitionDataBuilder<K,V,C,D> partDataBuilder,
UUID datasetId)
Constructs a new instance of dataset based on Ignite Cache, which is used as
upstream and as reliable storage for
partition context as well. |
CacheBasedDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteCache<Integer,C> datasetCache,
PartitionDataBuilder<K,V,C,D> partDataBuilder,
UUID datasetId)
Constructs a new instance of dataset based on Ignite Cache, which is used as
upstream and as reliable storage for
partition context as well. |
CacheBasedDatasetBuilder(Ignite ignite,
IgniteCache<K,V> upstreamCache)
Constructs a new instance of cache based dataset builder that makes
CacheBasedDataset with default
predicate that passes all upstream entries to dataset. |
CacheBasedDatasetBuilder(Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter)
Constructs a new instance of cache based dataset builder that makes
CacheBasedDataset . |
Modifier and Type | Method and Description |
---|---|
PipelineMdl<K,V> |
Pipeline.fit(Ignite ignite,
IgniteCache<K,V> cache)
Fits the pipeline to the input cache.
|
Modifier and Type | Method and Description |
---|---|
default IgniteBiFunction<K,V,R> |
PreprocessingTrainer.fit(Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiFunction<K,V,T> basePreprocessor)
Fits preprocessor.
|
Modifier and Type | Method and Description |
---|---|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv)
Computes cross-validated metrics.
|
CrossValidationResult |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
int cv,
ParamGrid paramGrid)
Computes cross-validated metrics with a passed parameter grid.
|
double[] |
CrossValidation.score(DatasetTrainer<M,L> trainer,
Metric<L> scoreCalculator,
Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
UniformMapper<K,V> mapper,
int cv)
Computes cross-validated metrics.
|
Constructor and Description |
---|
CacheBasedLabelPairCursor(IgniteCache<K,V> upstreamCache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
Model<Vector,L> mdl)
Constructs a new instance of cache based truth with prediction cursor.
|
CacheBasedLabelPairCursor(IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
Model<Vector,L> mdl)
Constructs a new instance of cache based truth with prediction cursor.
|
Modifier and Type | Method and Description |
---|---|
static <L,K,V> double |
Evaluator.evaluate(IgniteCache<K,V> dataCache,
IgniteBiPredicate<K,V> filter,
Model<Vector,L> mdl,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
Accuracy<L> metric)
Computes the given metric on the given cache.
|
static <L,K,V> double |
Evaluator.evaluate(IgniteCache<K,V> dataCache,
Model<Vector,L> mdl,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor,
Accuracy<L> metric)
Computes the given metric on the given cache.
|
Modifier and Type | Method and Description |
---|---|
<K,V> M |
DatasetTrainer.fit(Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiPredicate<K,V> filter,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,L> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
Constructor and Description |
---|
IgniteRepositoryQuery(org.springframework.data.repository.core.RepositoryMetadata metadata,
IgniteQuery qry,
Method mtd,
org.springframework.data.projection.ProjectionFactory factory,
IgniteCache cache) |
Constructor and Description |
---|
IgniteRepositoryImpl(IgniteCache<ID,T> cache)
Repository constructor.
|
Constructor and Description |
---|
IgniteRepositoryQuery(org.springframework.data.repository.core.RepositoryMetadata metadata,
IgniteQuery qry,
Method mtd,
org.springframework.data.projection.ProjectionFactory factory,
IgniteCache cache) |
Constructor and Description |
---|
IgniteRepositoryImpl(IgniteCache<ID,T> cache)
Repository constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
StreamReceiver.receive(IgniteCache<K,V> cache,
Collection<Map.Entry<K,V>> entries)
Updates cache with batch of entries.
|
void |
StreamVisitor.receive(IgniteCache<K,V> cache,
Collection<Map.Entry<K,V>> entries)
Updates cache with batch of entries.
|
void |
StreamTransformer.receive(IgniteCache<K,V> cache,
Collection<Map.Entry<K,V>> entries)
Updates cache with batch of entries.
|
Modifier and Type | Method and Description |
---|---|
static <K,V> StreamVisitor<K,V> |
StreamVisitor.from(IgniteBiInClosure<IgniteCache<K,V>,Map.Entry<K,V>> c)
Creates a new visitor based on instance of
IgniteBiInClosure . |
Follow @ApacheIgnite
Ignite Database and Caching Platform : ver. 2.7.2 Release Date : February 6 2019