Package | Description |
---|---|
org.apache.ignite.ml.composition.boosting |
Contains Gradient Boosting regression and classification abstract classes
allowing regressor type selecting in child classes.
|
org.apache.ignite.ml.composition.boosting.convergence |
Package contains implementation of convergency checking algorithms for gradient boosting.
|
org.apache.ignite.ml.composition.boosting.convergence.mean |
Contains implementation of convergence checking computer by mean of absolute value of errors in dataset.
|
org.apache.ignite.ml.composition.boosting.convergence.median |
Contains implementation of convergence checking computer by median of medians of errors in dataset.
|
org.apache.ignite.ml.composition.boosting.convergence.simple |
Contains implementation of Stub for convergence checking.
|
org.apache.ignite.ml.tree.randomforest |
Contains random forest implementation classes.
|
org.apache.ignite.ml.xgboost |
Base package for XGBoost model parser, correspondent DTOs and util classes.
|
Modifier and Type | Class and Description |
---|---|
static class |
GDBTrainer.GDBModel
GDB model.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ModelsComposition |
GDBTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
protected <K,V> ModelsComposition |
GDBTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
boolean |
GDBTrainer.isUpdateable(ModelsComposition mdl) |
protected <K,V> ModelsComposition |
GDBTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
double |
ConvergenceChecker.computeError(Vector features,
Double answer,
ModelsComposition currMdl)
Compute error for the specific vector of dataset.
|
abstract Double |
ConvergenceChecker.computeMeanErrorOnDataset(Dataset<EmptyContext,? extends FeatureMatrixWithLabelsOnHeapData> dataset,
ModelsComposition mdl)
Compute error for given model on learning dataset.
|
boolean |
ConvergenceChecker.isConverged(Dataset<EmptyContext,? extends FeatureMatrixWithLabelsOnHeapData> dataset,
ModelsComposition currMdl)
Checks convergency on dataset.
|
boolean |
ConvergenceChecker.isConverged(LearningEnvironmentBuilder envBuilder,
DatasetBuilder<K,V> datasetBuilder,
ModelsComposition currMdl)
Checks convergency on dataset.
|
Modifier and Type | Method and Description |
---|---|
Double |
MeanAbsValueConvergenceChecker.computeMeanErrorOnDataset(Dataset<EmptyContext,? extends FeatureMatrixWithLabelsOnHeapData> dataset,
ModelsComposition mdl)
Compute error for given model on learning dataset.
|
Modifier and Type | Method and Description |
---|---|
Double |
MedianOfMedianConvergenceChecker.computeMeanErrorOnDataset(Dataset<EmptyContext,? extends FeatureMatrixWithLabelsOnHeapData> dataset,
ModelsComposition mdl)
Compute error for given model on learning dataset.
|
Modifier and Type | Method and Description |
---|---|
Double |
ConvergenceCheckerStub.computeMeanErrorOnDataset(Dataset<EmptyContext,? extends FeatureMatrixWithLabelsOnHeapData> dataset,
ModelsComposition mdl)
Compute error for given model on learning dataset.
|
boolean |
ConvergenceCheckerStub.isConverged(Dataset<EmptyContext,? extends FeatureMatrixWithLabelsOnHeapData> dataset,
ModelsComposition currMdl)
Checks convergency on dataset.
|
boolean |
ConvergenceCheckerStub.isConverged(LearningEnvironmentBuilder envBuilder,
DatasetBuilder<K,V> datasetBuilder,
ModelsComposition currMdl)
Checks convergency on dataset.
|
Modifier and Type | Method and Description |
---|---|
protected ModelsComposition |
RandomForestClassifierTrainer.buildComposition(List<TreeRoot> models)
Returns composition of built trees.
|
protected abstract ModelsComposition |
RandomForestTrainer.buildComposition(List<TreeRoot> models)
Returns composition of built trees.
|
protected ModelsComposition |
RandomForestRegressionTrainer.buildComposition(List<TreeRoot> models)
Returns composition of built trees.
|
<K,V> ModelsComposition |
RandomForestTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
protected <K,V> ModelsComposition |
RandomForestTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
boolean |
RandomForestTrainer.isUpdateable(ModelsComposition mdl) |
protected <K,V> ModelsComposition |
RandomForestTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
ModelsComposition |
XGModelComposition.getModelsComposition() |
Modifier and Type | Method and Description |
---|---|
void |
XGModelComposition.setModelsComposition(ModelsComposition modelsComposition) |
GridGain In-Memory Computing Platform : ver. 8.9.14 Release Date : November 5 2024