Package | Description |
---|---|
org.apache.ignite.ml.dataset.impl.bootstrapping |
Base package for bootstrapped implementation of machine learning dataset.
|
org.apache.ignite.ml.knn |
Contains main APIs for kNN algorithms.
|
org.apache.ignite.ml.knn.ann |
Contains main APIs for ANN classification algorithms.
|
org.apache.ignite.ml.knn.classification |
Contains main APIs for kNN classification algorithms.
|
org.apache.ignite.ml.knn.regression |
Contains helper classes for kNN regression algorithms.
|
org.apache.ignite.ml.structures |
Contains some internal utility structures.
|
org.apache.ignite.ml.structures.partition |
Contains internal APIs for dataset partitioned labeled datasets.
|
Modifier and Type | Class and Description |
---|---|
class |
BootstrappedVector
Represents vector with repetitions counters for subsamples in bootstrapped dataset.
|
Modifier and Type | Method and Description |
---|---|
protected @NotNull LabeledVector[] |
NNClassificationModel.getKClosestVectors(LabeledVectorSet<Double,LabeledVector> trainingData,
TreeMap<Double,Set<Integer>> distanceIdxPairs)
Iterates along entries in distance map and fill the resulting k-element array.
|
Modifier and Type | Method and Description |
---|---|
protected LabeledVectorSet<Double,LabeledVector> |
NNClassificationModel.buildLabeledDatasetOnListOfVectors(List<LabeledVector> neighborsFromPartitions) |
Modifier and Type | Method and Description |
---|---|
protected LabeledVectorSet<Double,LabeledVector> |
NNClassificationModel.buildLabeledDatasetOnListOfVectors(List<LabeledVector> neighborsFromPartitions) |
protected @NotNull TreeMap<Double,Set<Integer>> |
NNClassificationModel.getDistances(Vector v,
LabeledVectorSet<Double,LabeledVector> trainingData)
Computes distances between given vector and each vector in training dataset.
|
protected @NotNull LabeledVector[] |
NNClassificationModel.getKClosestVectors(LabeledVectorSet<Double,LabeledVector> trainingData,
TreeMap<Double,Set<Integer>> distanceIdxPairs)
Iterates along entries in distance map and fill the resulting k-element array.
|
Modifier and Type | Method and Description |
---|---|
LabeledVectorSet<ProbableLabel,LabeledVector> |
ANNModelFormat.getCandidates() |
LabeledVectorSet<ProbableLabel,LabeledVector> |
ANNClassificationModel.getCandidates() |
Constructor and Description |
---|
ANNClassificationModel(LabeledVectorSet<ProbableLabel,LabeledVector> centers,
ANNClassificationTrainer.CentroidStat centroindsStat)
Build the model based on a candidates set.
|
ANNModelFormat(int k,
DistanceMeasure measure,
NNStrategy stgy,
LabeledVectorSet<ProbableLabel,LabeledVector> candidates,
ANNClassificationTrainer.CentroidStat candidatesStat)
Creates an instance.
|
Modifier and Type | Method and Description |
---|---|
protected List<LabeledVector> |
KNNClassificationModel.findKNearestNeighbors(Vector v)
The main idea is calculation all distance pairs between given vector and all vectors in training set, sorting
them and finding k vectors with min distance with the given vector.
|
Constructor and Description |
---|
KNNClassificationModel(Dataset<EmptyContext,LabeledVectorSet<Double,LabeledVector>> dataset)
Builds the model via prepared dataset.
|
Constructor and Description |
---|
KNNRegressionModel(Dataset<EmptyContext,LabeledVectorSet<Double,LabeledVector>> dataset)
Builds the model via prepared dataset.
|
Modifier and Type | Class and Description |
---|---|
class |
LabeledVectorSet<L,Row extends LabeledVector>
The set of labeled vectors used in local partition calculations.
|
Constructor and Description |
---|
LabeledVectorSet(Row[] data)
Creates new Labeled Dataset by given data.
|
LabeledVectorSet(Row[] data,
int colSize)
Creates new Labeled Dataset by given data.
|
Modifier and Type | Method and Description |
---|---|
LabeledVectorSet<Double,LabeledVector> |
LabeledDatasetPartitionDataBuilderOnHeap.build(Iterator<UpstreamEntry<K,V>> upstreamData,
long upstreamDataSize,
C ctx)
Builds a new partition
data from a partition upstream data and partition context |
Follow @ApacheIgnite
Ignite Database and Caching Platform : ver. 2.7.2 Release Date : February 6 2019