Package | Description |
---|---|
org.apache.ignite.ml.nn |
Contains neural networks and related classes.
|
org.apache.ignite.ml.optimization |
Contains implementations of optimization algorithms and related classes.
|
org.apache.ignite.ml.optimization.updatecalculators |
Contains update calculators.
|
Modifier and Type | Method and Description |
---|---|
IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> |
MLPTrainer.getLoss()
Get the loss function to be minimized during the training.
|
Modifier and Type | Method and Description |
---|---|
Vector |
MultilayerPerceptron.differentiateByParameters(IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> loss,
Matrix inputsBatch,
Matrix truthBatch)
Compose function in the following way: feed output of this model as input to second argument to loss function.
|
MLPTrainer<P> |
MLPTrainer.withLoss(IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> loss)
Set up the loss function to be minimized during the training.
|
Constructor and Description |
---|
MLPTrainer(IgniteFunction<Dataset<EmptyContext,SimpleLabeledDatasetData>,MLPArchitecture> archSupplier,
IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> loss,
UpdatesStrategy<? super MultilayerPerceptron,P> updatesStgy,
int maxIterations,
int batchSize,
int locIterations,
long seed)
Constructs a new instance of multilayer perceptron trainer.
|
MLPTrainer(MLPArchitecture arch,
IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> loss,
UpdatesStrategy<? super MultilayerPerceptron,P> updatesStgy,
int maxIterations,
int batchSize,
int locIterations,
long seed)
Constructs a new instance of multilayer perceptron trainer.
|
Modifier and Type | Field and Description |
---|---|
static IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> |
LossFunctions.HINGE
Hinge loss function.
|
static IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> |
LossFunctions.L1
L1 loss function.
|
static IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> |
LossFunctions.L2
L2 loss function.
|
static IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> |
LossFunctions.LOG
Log loss function.
|
static IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> |
LossFunctions.MSE
Mean squared error loss function.
|
Modifier and Type | Method and Description |
---|---|
Vector |
SmoothParametrized.differentiateByParameters(IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> loss,
Matrix inputsBatch,
Matrix truthBatch)
Compose function in the following way: feed output of this model as input to second argument to loss function.
|
Modifier and Type | Field and Description |
---|---|
protected IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> |
SimpleGDUpdateCalculator.loss
Loss function.
|
protected IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> |
RPropUpdateCalculator.loss
Loss function.
|
Modifier and Type | Method and Description |
---|---|
P |
ParameterUpdateCalculator.init(M mdl,
IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> loss)
Initializes the update calculator.
|
NesterovParameterUpdate |
NesterovUpdateCalculator.init(M mdl,
IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> loss)
Initializes the update calculator.
|
SimpleGDParameterUpdate |
SimpleGDUpdateCalculator.init(SmoothParametrized mdl,
IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> loss)
Initializes the update calculator.
|
RPropParameterUpdate |
RPropUpdateCalculator.init(SmoothParametrized mdl,
IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> loss)
Initializes the update calculator.
|
Follow @ApacheIgnite
Ignite Database and Caching Platform : ver. 2.7.2 Release Date : February 6 2019