Package | Description |
---|---|
org.apache.ignite.ml.tree |
Root package for decision trees.
|
org.apache.ignite.ml.tree.data |
Contains data and data builder required for decision tree trainers built on top of partition based dataset.
|
org.apache.ignite.ml.tree.impurity |
Root package for decision tree impurity measures and calculators.
|
org.apache.ignite.ml.tree.impurity.gini |
Contains Gini impurity measure and calculator.
|
org.apache.ignite.ml.tree.impurity.mse |
Contains mean squared error impurity measure and calculator.
|
org.apache.ignite.ml.tree.leaf |
Root package for decision trees leaf builders.
|
Modifier and Type | Method and Description |
---|---|
<K,V> DecisionTreeNode |
DecisionTree.fit(Dataset<EmptyContext,DecisionTreeData> dataset) |
protected abstract ImpurityMeasureCalculator<T> |
DecisionTree.getImpurityMeasureCalculator(Dataset<EmptyContext,DecisionTreeData> dataset)
Returns impurity measure calculator.
|
protected ImpurityMeasureCalculator<GiniImpurityMeasure> |
DecisionTreeClassificationTrainer.getImpurityMeasureCalculator(Dataset<EmptyContext,DecisionTreeData> dataset)
Returns impurity measure calculator.
|
protected ImpurityMeasureCalculator<MSEImpurityMeasure> |
DecisionTreeRegressionTrainer.getImpurityMeasureCalculator(Dataset<EmptyContext,DecisionTreeData> dataset)
Returns impurity measure calculator.
|
Modifier and Type | Method and Description |
---|---|
DecisionTreeData |
DecisionTreeDataBuilder.build(LearningEnvironment envBuilder,
Iterator<UpstreamEntry<K,V>> upstreamData,
long upstreamDataSize,
C ctx)
Builds a new partition
data from a partition upstream data and partition context . |
DecisionTreeData |
DecisionTreeData.filter(TreeFilter filter)
Filters objects and returns only data that passed filter.
|
Modifier and Type | Method and Description |
---|---|
abstract StepFunction<T>[] |
ImpurityMeasureCalculator.calculate(DecisionTreeData data,
TreeFilter filter,
int depth)
Calculates all impurity measures required required to find a best split and returns them as an array of
StepFunction (for every column). |
protected int |
ImpurityMeasureCalculator.columnsCount(DecisionTreeData data,
TreeDataIndex idx)
Returns columns count in current dataset.
|
protected double |
ImpurityMeasureCalculator.getFeatureValue(DecisionTreeData data,
TreeDataIndex idx,
int featureId,
int k)
Returns feature value in according to kth order statistic.
|
protected Vector |
ImpurityMeasureCalculator.getFeatureValues(DecisionTreeData data,
TreeDataIndex idx,
int featureId,
int k)
Returns feature value in according to kth order statistic.
|
protected double |
ImpurityMeasureCalculator.getLabelValue(DecisionTreeData data,
TreeDataIndex idx,
int featureId,
int k)
Returns label value in according to kth order statistic.
|
protected int |
ImpurityMeasureCalculator.rowsCount(DecisionTreeData data,
TreeDataIndex idx)
Returns rows count in current dataset.
|
Modifier and Type | Method and Description |
---|---|
StepFunction<GiniImpurityMeasure>[] |
GiniImpurityMeasureCalculator.calculate(DecisionTreeData data,
TreeFilter filter,
int depth)
Calculates all impurity measures required required to find a best split and returns them as an array of
StepFunction (for every column). |
Modifier and Type | Method and Description |
---|---|
StepFunction<MSEImpurityMeasure>[] |
MSEImpurityMeasureCalculator.calculate(DecisionTreeData data,
TreeFilter filter,
int depth)
Calculates all impurity measures required required to find a best split and returns them as an array of
StepFunction (for every column). |
Modifier and Type | Method and Description |
---|---|
DecisionTreeLeafNode |
MeanDecisionTreeLeafBuilder.createLeafNode(Dataset<EmptyContext,DecisionTreeData> dataset,
TreeFilter pred)
Creates new leaf node for given dataset and node predicate.
|
DecisionTreeLeafNode |
MostCommonDecisionTreeLeafBuilder.createLeafNode(Dataset<EmptyContext,DecisionTreeData> dataset,
TreeFilter pred)
Creates new leaf node for given dataset and node predicate.
|
DecisionTreeLeafNode |
DecisionTreeLeafBuilder.createLeafNode(Dataset<EmptyContext,DecisionTreeData> dataset,
TreeFilter pred)
Creates new leaf node for given dataset and node predicate.
|
GridGain In-Memory Computing Platform : ver. 8.9.14 Release Date : November 5 2024