Package | Description |
---|---|
org.apache.ignite.ml.trainers |
Contains model trainers.
|
Modifier and Type | Method and Description |
---|---|
<I1> AdaptableDatasetModel<I1,O,IW,OW,M> |
AdaptableDatasetModel.andBefore(IgniteFunction<I1,I> before)
Create new
AdaptableDatasetModel which is a composition of the form thisMdl . before . |
<O1> AdaptableDatasetModel<I,O1,IW,OW,M> |
AdaptableDatasetModel.andThen(IgniteModel<O,O1> after)
Get a composition model of the form
x -> after(mdl(x)) . |
<K,V> AdaptableDatasetModel<I,O,IW,OW,M> |
AdaptableDatasetTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
protected <K,V> AdaptableDatasetModel<I,O,IW,OW,M> |
AdaptableDatasetTrainer.updateModel(AdaptableDatasetModel<I,O,IW,OW,M> mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
<M1 extends IgniteModel<IW,OW>> |
AdaptableDatasetModel.withInnerModel(M1 mdl)
Create new instance of this class with changed inner model.
|
Modifier and Type | Method and Description |
---|---|
boolean |
AdaptableDatasetTrainer.isUpdateable(AdaptableDatasetModel<I,O,IW,OW,M> mdl) |
protected <K,V> AdaptableDatasetModel<I,O,IW,OW,M> |
AdaptableDatasetTrainer.updateModel(AdaptableDatasetModel<I,O,IW,OW,M> mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
<O1,M1 extends IgniteModel<O,O1>> |
AdaptableDatasetTrainer.andThen(DatasetTrainer<M1,L> tr,
IgniteFunction<AdaptableDatasetModel<I,O,IW,OW,M>,IgniteFunction<LabeledVector<L>,LabeledVector<L>>> datasetMappingProducer)
Create a
TrainersSequentialComposition of whis trainer and specified trainer. |
GridGain In-Memory Computing Platform : ver. 8.9.14 Release Date : November 5 2024