public class TrainerTransformers extends Object
Constructor and Description |
---|
TrainerTransformers() |
Modifier and Type | Method and Description |
---|---|
static int[] |
getMapping(int featuresVectorSize,
int maximumFeaturesCntPerMdl,
long seed)
Get mapping R^featuresVectorSize -> R^maximumFeaturesCntPerMdl.
|
static <L> BaggedTrainer<L> |
makeBagged(DatasetTrainer<? extends IgniteModel,L> trainer,
int ensembleSize,
double subsampleRatio,
PredictionsAggregator aggregator)
Add bagging logic to a given trainer.
|
static <M extends IgniteModel<Vector,Double>,L> |
makeBagged(DatasetTrainer<M,L> trainer,
int ensembleSize,
double subsampleRatio,
int featureVectorSize,
int featuresSubspaceDim,
PredictionsAggregator aggregator)
Add bagging logic to a given trainer.
|
public static <L> BaggedTrainer<L> makeBagged(DatasetTrainer<? extends IgniteModel,L> trainer, int ensembleSize, double subsampleRatio, PredictionsAggregator aggregator)
L
- Type of labels.ensembleSize
- Size of ensemble.subsampleRatio
- Subsample ratio to whole dataset.aggregator
- Aggregator.public static <M extends IgniteModel<Vector,Double>,L> BaggedTrainer<L> makeBagged(DatasetTrainer<M,L> trainer, int ensembleSize, double subsampleRatio, int featureVectorSize, int featuresSubspaceDim, PredictionsAggregator aggregator)
M
- Type of one model in ensemble.L
- Type of labels.ensembleSize
- Size of ensemble.subsampleRatio
- Subsample ratio to whole dataset.aggregator
- Aggregator.featureVectorSize
- Feature vector dimensionality.featuresSubspaceDim
- Feature subspace dimensionality.public static int[] getMapping(int featuresVectorSize, int maximumFeaturesCntPerMdl, long seed)
featuresVectorSize
- Features vector size (Dimension of initial space).maximumFeaturesCntPerMdl
- Dimension of target space.seed
- Seed.
GridGain In-Memory Computing Platform : ver. 8.9.15 Release Date : December 3 2024