Package | Description |
---|---|
org.apache.ignite.ml.composition.combinators.sequential |
Contains sequential combinators of trainers and models.
|
org.apache.ignite.ml.dataset.feature.extractor |
Package for upstream object vectorizations.
|
org.apache.ignite.ml.dataset.feature.extractor.impl |
Package contains default implementations of
Vectorizer . |
org.apache.ignite.ml.dataset.impl.bootstrapping |
Base package for bootstrapped implementation of machine learning dataset.
|
org.apache.ignite.ml.knn |
Contains main APIs for kNN algorithms.
|
org.apache.ignite.ml.knn.ann |
Contains main APIs for ANN classification algorithms.
|
org.apache.ignite.ml.knn.utils |
Contains util functionality for kNN algorithms.
|
org.apache.ignite.ml.knn.utils.indices |
Contains utils functionality for indices in kNN algorithms.
|
org.apache.ignite.ml.math.primitives.vector |
Contains vector related classes.
|
org.apache.ignite.ml.preprocessing |
Base package for machine learning preprocessing classes.
|
org.apache.ignite.ml.preprocessing.binarization |
Contains binarization preprocessor.
|
org.apache.ignite.ml.preprocessing.developer |
Contains Developer API preprocessors.
|
org.apache.ignite.ml.preprocessing.encoding.onehotencoder |
Contains one hot encoding preprocessor.
|
org.apache.ignite.ml.preprocessing.encoding.stringencoder |
Contains string encoding preprocessor.
|
org.apache.ignite.ml.preprocessing.imputing |
Contains Imputer preprocessor.
|
org.apache.ignite.ml.preprocessing.maxabsscaling |
Contains Max Abs Scaler preprocessor.
|
org.apache.ignite.ml.preprocessing.minmaxscaling |
Contains Min Max Scaler preprocessor.
|
org.apache.ignite.ml.preprocessing.normalization |
Contains Normalizer preprocessor.
|
org.apache.ignite.ml.preprocessing.standardscaling |
Contains Standard scaler preprocessor.
|
org.apache.ignite.ml.structures |
Contains some internal utility structures.
|
org.apache.ignite.ml.structures.partition |
Contains internal APIs for dataset partitioned labeled datasets.
|
org.apache.ignite.ml.trainers |
Contains model trainers.
|
org.apache.ignite.ml.util.generators |
Contains utility classes for data streams generation.
|
org.apache.ignite.ml.util.generators.standard |
Contains classes for predefined data stream generators.
|
Modifier and Type | Field and Description |
---|---|
protected IgniteBiFunction<Integer,? super IgniteModel<I,O1>,IgniteFunction<LabeledVector<L>,LabeledVector<L>>> |
TrainersSequentialComposition.datasetMapping
Dataset mapping.
|
protected IgniteBiFunction<Integer,? super IgniteModel<I,O1>,IgniteFunction<LabeledVector<L>,LabeledVector<L>>> |
TrainersSequentialComposition.datasetMapping
Dataset mapping.
|
Modifier and Type | Method and Description |
---|---|
static <I,O,L> TrainersSequentialComposition<I,O,O,L> |
TrainersSequentialComposition.ofSame(DatasetTrainer<? extends IgniteModel<I,O>,L> tr,
IgniteBiFunction<Integer,? super IgniteModel<I,O>,IgniteFunction<LabeledVector<L>,LabeledVector<L>>> datasetMapping,
IgniteBiPredicate<Integer,IgniteModel<I,O>> shouldStop,
IgniteFunction<O,I> out2In)
Construct sequential composition of same trainers.
|
static <I,O,L> TrainersSequentialComposition<I,O,O,L> |
TrainersSequentialComposition.ofSame(DatasetTrainer<? extends IgniteModel<I,O>,L> tr,
IgniteBiFunction<Integer,? super IgniteModel<I,O>,IgniteFunction<LabeledVector<L>,LabeledVector<L>>> datasetMapping,
IgniteBiPredicate<Integer,IgniteModel<I,O>> shouldStop,
IgniteFunction<O,I> out2In)
Construct sequential composition of same trainers.
|
Modifier and Type | Method and Description |
---|---|
LabeledVector<L> |
Vectorizer.apply(K key,
V value)
Extracts labeled vector from upstream object.
|
LabeledVector<L> |
Vectorizer.extract(K k,
V v)
Extract
LabeledVector from key and value. |
Modifier and Type | Method and Description |
---|---|
protected List<Integer> |
LabeledDummyVectorizer.allCoords(K key,
LabeledVector<L> value)
Returns list of all coordinate with feature values.
|
protected Double |
LabeledDummyVectorizer.feature(Integer coord,
K key,
LabeledVector<L> value)
Extracts feature value by given coordinate.
|
protected L |
LabeledDummyVectorizer.label(Integer coord,
K key,
LabeledVector<L> value)
Extract label value by given coordinate.
|
Modifier and Type | Class and Description |
---|---|
class |
BootstrappedVector
Represents vector with repetitions counters for subsamples in bootstrapped dataset.
|
Modifier and Type | Method and Description |
---|---|
protected @NotNull LabeledVector[] |
NNClassificationModel.getKClosestVectors(LabeledVectorSet<LabeledVector> trainingData,
TreeMap<Double,Set<Integer>> distanceIdxPairs)
Iterates along entries in distance map and fill the resulting k-element array.
|
Modifier and Type | Method and Description |
---|---|
protected LabeledVectorSet<LabeledVector> |
NNClassificationModel.buildLabeledDatasetOnListOfVectors(List<LabeledVector> neighborsFromPartitions) |
List<LabeledVector<L>> |
KNNModel.findKClosest(int k,
Vector pnt)
Finds
k closest elements to the specified point. |
Modifier and Type | Method and Description |
---|---|
protected LabeledVectorSet<LabeledVector> |
NNClassificationModel.buildLabeledDatasetOnListOfVectors(List<LabeledVector> neighborsFromPartitions) |
protected @NotNull TreeMap<Double,Set<Integer>> |
NNClassificationModel.getDistances(Vector v,
LabeledVectorSet<LabeledVector<Double>> trainingData)
Computes distances between given vector and each vector in training dataset.
|
protected @NotNull LabeledVector[] |
NNClassificationModel.getKClosestVectors(LabeledVectorSet<LabeledVector> trainingData,
TreeMap<Double,Set<Integer>> distanceIdxPairs)
Iterates along entries in distance map and fill the resulting k-element array.
|
Modifier and Type | Method and Description |
---|---|
LabeledVectorSet<LabeledVector> |
ANNClassificationModel.getCandidates() |
LabeledVectorSet<LabeledVector> |
ANNModelFormat.getCandidates() |
Constructor and Description |
---|
ANNClassificationModel(LabeledVectorSet<LabeledVector> centers,
ANNClassificationTrainer.CentroidStat centroindsStat)
Build the model based on a candidates set.
|
ANNModelFormat(int k,
DistanceMeasure distanceMeasure,
boolean weighted,
LabeledVectorSet<LabeledVector> candidates,
ANNClassificationTrainer.CentroidStat candidatesStat)
Creates an instance.
|
Modifier and Type | Method and Description |
---|---|
LabeledVector<L> |
PointWithDistance.getPnt() |
Modifier and Type | Method and Description |
---|---|
static <K,V,C extends Serializable> |
KNNUtils.buildDataset(LearningEnvironmentBuilder envBuilder,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> vectorizer)
Builds dataset.
|
static <L> List<LabeledVector<L>> |
PointWithDistanceUtil.transfomToListOrdered(Queue<PointWithDistance<L>> points)
Util method that transforms collection of
PointWithDistance to array of LabeledVector . |
Modifier and Type | Method and Description |
---|---|
static <L> void |
PointWithDistanceUtil.tryToAddIntoHeap(Queue<PointWithDistance<L>> heap,
int k,
LabeledVector<L> dataPnt,
double distance)
Util method that adds data point into heap if it fits (if heap size is less than
k or a distance from
taget point to data point is less than a distance from target point to the most distant data point in heap). |
Modifier and Type | Method and Description |
---|---|
static <L> void |
PointWithDistanceUtil.tryToAddIntoHeap(Queue<PointWithDistance<L>> heap,
int k,
Vector pnt,
List<LabeledVector<L>> dataPnts,
DistanceMeasure distanceMeasure)
Util method that adds data points into heap if they fits (if heap size is less than
k or a distance from
taget point to data point is less than a distance from target point to the most distant data point in heap). |
Constructor and Description |
---|
PointWithDistance(LabeledVector<L> pnt,
double distance)
Constructs a new instance of data point with distance.
|
Modifier and Type | Method and Description |
---|---|
List<LabeledVector<L>> |
KDTreeSpatialIndex.findKClosest(int k,
Vector pnt)
Finds
k closest elements to the specified point. |
List<LabeledVector<L>> |
ArraySpatialIndex.findKClosest(int k,
Vector pnt)
Finds
k closest elements to the specified point. |
List<LabeledVector<L>> |
SpatialIndex.findKClosest(int k,
Vector pnt)
Finds
k closest elements to the specified point. |
List<LabeledVector<L>> |
BallTreeSpatialIndex.findKClosest(int k,
Vector pnt)
Finds
k closest elements to the specified point. |
Constructor and Description |
---|
ArraySpatialIndex(List<LabeledVector<L>> data,
DistanceMeasure distanceMeasure)
Construct a new array spatial index.
|
BallTreeSpatialIndex(List<LabeledVector<L>> data,
DistanceMeasure distanceMeasure)
Constructs a new instance of Ball tree spatial index.
|
KDTreeSpatialIndex(List<LabeledVector<L>> data,
DistanceMeasure distanceMeasure)
Constructs a new instance of KD tree spatial index.
|
Modifier and Type | Method and Description |
---|---|
default <L> LabeledVector<L> |
Vector.labeled(L lbl)
Creates
LabeledVector instance. |
Modifier and Type | Method and Description |
---|---|
default <L1,L2> Preprocessor<K,V> |
Preprocessor.map(IgniteFunction<LabeledVector<L1>,LabeledVector<L2>> func)
Map vectorizer answer.
|
default <L1,L2> Preprocessor<K,V> |
Preprocessor.map(IgniteFunction<LabeledVector<L1>,LabeledVector<L2>> func)
Map vectorizer answer.
|
Modifier and Type | Method and Description |
---|---|
LabeledVector |
BinarizationPreprocessor.apply(K k,
V v)
Applies this preprocessor.
|
Modifier and Type | Method and Description |
---|---|
LabeledVector |
PatchedPreprocessor.apply(K k,
V v)
Applies this preprocessor.
|
LabeledVector<L1> |
MappedPreprocessor.apply(K key,
V value) |
Constructor and Description |
---|
MappedPreprocessor(Preprocessor<K,V> original,
IgniteFunction<LabeledVector<L0>,LabeledVector<L1>> andThen)
Creates an instance of MappedPreprocessor.
|
MappedPreprocessor(Preprocessor<K,V> original,
IgniteFunction<LabeledVector<L0>,LabeledVector<L1>> andThen)
Creates an instance of MappedPreprocessor.
|
PatchedPreprocessor(IgniteFunction<LabeledVector<L1>,LabeledVector<L2>> lbPatcher,
Preprocessor<K,V> basePreprocessor)
Constructs a new instance of Binarization preprocessor.
|
PatchedPreprocessor(IgniteFunction<LabeledVector<L1>,LabeledVector<L2>> lbPatcher,
Preprocessor<K,V> basePreprocessor)
Constructs a new instance of Binarization preprocessor.
|
Modifier and Type | Method and Description |
---|---|
LabeledVector |
OneHotEncoderPreprocessor.apply(K k,
V v)
Applies this preprocessor.
|
Modifier and Type | Method and Description |
---|---|
LabeledVector |
StringEncoderPreprocessor.apply(K k,
V v)
Applies this preprocessor.
|
Modifier and Type | Method and Description |
---|---|
LabeledVector |
ImputerPreprocessor.apply(K k,
V v)
Applies this preprocessor.
|
Modifier and Type | Method and Description |
---|---|
LabeledVector |
MaxAbsScalerPreprocessor.apply(K k,
V v)
Applies this preprocessor.
|
Modifier and Type | Method and Description |
---|---|
LabeledVector |
MinMaxScalerPreprocessor.apply(K k,
V v)
Applies this preprocessor.
|
Modifier and Type | Method and Description |
---|---|
LabeledVector |
NormalizationPreprocessor.apply(K k,
V v)
Applies this preprocessor.
|
Modifier and Type | Method and Description |
---|---|
LabeledVector |
StandardScalerPreprocessor.apply(K k,
V v)
Applies this preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
LabeledVectorSet<Row extends LabeledVector>
The set of labeled vectors used in local partition calculations.
|
Constructor and Description |
---|
LabeledVectorSet(Row[] data)
Creates new Labeled Dataset by given data.
|
LabeledVectorSet(Row[] data,
int colSize)
Creates new Labeled Dataset by given data.
|
Modifier and Type | Method and Description |
---|---|
LabeledVectorSet<LabeledVector> |
LabeledDatasetPartitionDataBuilderOnHeap.build(LearningEnvironment env,
Iterator<UpstreamEntry<K,V>> upstreamData,
long upstreamDataSize,
C ctx)
Builds a new partition
data from a partition upstream data and partition context . |
Modifier and Type | Method and Description |
---|---|
LabeledVector<L> |
FeatureLabelExtractor.extract(K k,
V v)
Extract
LabeledVector from key and value. |
Modifier and Type | Method and Description |
---|---|
<O1,M1 extends IgniteModel<O,O1>> |
AdaptableDatasetTrainer.andThen(DatasetTrainer<M1,L> tr,
IgniteFunction<AdaptableDatasetModel<I,O,IW,OW,M>,IgniteFunction<LabeledVector<L>,LabeledVector<L>>> datasetMappingProducer)
Create a
TrainersSequentialComposition of whis trainer and specified trainer. |
<O1,M1 extends IgniteModel<O,O1>> |
AdaptableDatasetTrainer.andThen(DatasetTrainer<M1,L> tr,
IgniteFunction<AdaptableDatasetModel<I,O,IW,OW,M>,IgniteFunction<LabeledVector<L>,LabeledVector<L>>> datasetMappingProducer)
Create a
TrainersSequentialComposition of whis trainer and specified trainer. |
Modifier and Type | Method and Description |
---|---|
Stream<LabeledVector<Double>> |
DataStreamGenerator.labeled() |
default Stream<LabeledVector<Double>> |
DataStreamGenerator.labeled(IgniteFunction<Vector,Double> classifier) |
Modifier and Type | Method and Description |
---|---|
default <K> void |
DataStreamGenerator.fillCacheWithCustomKey(int datasetSize,
IgniteCache<K,LabeledVector<Double>> cache,
Function<LabeledVector<Double>,K> keyMapper)
Fills given cache with labeled vectors from this generator and user defined mapper from vectors to keys.
|
default <K> void |
DataStreamGenerator.fillCacheWithCustomKey(int datasetSize,
IgniteCache<K,LabeledVector<Double>> cache,
Function<LabeledVector<Double>,K> keyMapper)
Fills given cache with labeled vectors from this generator and user defined mapper from vectors to keys.
|
default void |
DataStreamGenerator.fillCacheWithVecHashAsKey(int datasetSize,
IgniteCache<Integer,LabeledVector<Double>> cache)
Fills given cache with labeled vectors from this generator as values and their hashcodes as keys.
|
default void |
DataStreamGenerator.fillCacheWithVecUUIDAsKey(int datasetSize,
IgniteCache<UUID,LabeledVector<Double>> cache)
Fills given cache with labeled vectors from this generator as values and random UUIDs as keys
|
Modifier and Type | Method and Description |
---|---|
Stream<LabeledVector<Double>> |
TwoSeparableClassesDataStream.labeled() |
Stream<LabeledVector<Double>> |
RegressionDataStream.labeled() |
Stream<LabeledVector<Double>> |
RingsDataStream.labeled() |
Stream<LabeledVector<Double>> |
GaussianMixtureDataStream.labeled() |
GridGain In-Memory Computing Platform : ver. 8.9.14 Release Date : November 5 2024