Package | Description |
---|---|
org.apache.ignite.ml.clustering.gmm |
Contains Gauss Mixture Model clustering algorithm (see
GmmModel ). |
org.apache.ignite.ml.clustering.kmeans |
Contains kMeans clustering algorithm.
|
org.apache.ignite.ml.composition.bagging |
Contains bootstrap aggregation (bagging) trainer allowing to combine some other trainers and
return a bagged version of them.
|
org.apache.ignite.ml.composition.boosting |
Contains Gradient Boosting regression and classification abstract classes
allowing regressor type selecting in child classes.
|
org.apache.ignite.ml.composition.boosting.convergence |
Package contains implementation of convergency checking algorithms for gradient boosting.
|
org.apache.ignite.ml.composition.boosting.convergence.mean |
Contains implementation of convergence checking computer by mean of absolute value of errors in dataset.
|
org.apache.ignite.ml.composition.boosting.convergence.median |
Contains implementation of convergence checking computer by median of medians of errors in dataset.
|
org.apache.ignite.ml.composition.boosting.convergence.simple |
Contains implementation of Stub for convergence checking.
|
org.apache.ignite.ml.composition.combinators.parallel |
Contains parallel combinators of trainers and models.
|
org.apache.ignite.ml.composition.combinators.sequential |
Contains sequential combinators of trainers and models.
|
org.apache.ignite.ml.composition.stacking |
Contains classes used for training with stacking technique.
|
org.apache.ignite.ml.dataset |
Base package for machine learning dataset classes.
|
org.apache.ignite.ml.dataset.feature.extractor |
Package for upstream object vectorizations.
|
org.apache.ignite.ml.dataset.feature.extractor.impl |
Package contains default implementations of
Vectorizer . |
org.apache.ignite.ml.dataset.impl.bootstrapping |
Base package for bootstrapped implementation of machine learning dataset.
|
org.apache.ignite.ml.dataset.primitive |
Package that contains basic primitives build on top of
Dataset . |
org.apache.ignite.ml.dataset.primitive.builder.data |
Contains partition
data builders. |
org.apache.ignite.ml.knn |
Contains main APIs for kNN algorithms.
|
org.apache.ignite.ml.knn.ann |
Contains main APIs for ANN classification algorithms.
|
org.apache.ignite.ml.knn.utils |
Contains util functionality for kNN algorithms.
|
org.apache.ignite.ml.multiclass |
Contains various multi-classifier models and trainers.
|
org.apache.ignite.ml.naivebayes.discrete |
Contains Bernoulli naive Bayes classifier.
|
org.apache.ignite.ml.naivebayes.gaussian |
Contains Gaussian naive Bayes classifier.
|
org.apache.ignite.ml.nn |
Contains neural networks and related classes.
|
org.apache.ignite.ml.pipeline |
Contains Pipeline API.
|
org.apache.ignite.ml.preprocessing |
Base package for machine learning preprocessing classes.
|
org.apache.ignite.ml.preprocessing.binarization |
Contains binarization preprocessor.
|
org.apache.ignite.ml.preprocessing.developer |
Contains Developer API preprocessors.
|
org.apache.ignite.ml.preprocessing.encoding |
Contains encoding preprocessors.
|
org.apache.ignite.ml.preprocessing.encoding.onehotencoder |
Contains one hot encoding preprocessor.
|
org.apache.ignite.ml.preprocessing.encoding.stringencoder |
Contains string encoding preprocessor.
|
org.apache.ignite.ml.preprocessing.imputing |
Contains Imputer preprocessor.
|
org.apache.ignite.ml.preprocessing.maxabsscaling |
Contains Max Abs Scaler preprocessor.
|
org.apache.ignite.ml.preprocessing.minmaxscaling |
Contains Min Max Scaler preprocessor.
|
org.apache.ignite.ml.preprocessing.normalization |
Contains Normalizer preprocessor.
|
org.apache.ignite.ml.preprocessing.standardscaling |
Contains Standard scaler preprocessor.
|
org.apache.ignite.ml.regressions.linear |
Contains various linear regressions.
|
org.apache.ignite.ml.regressions.logistic |
Contains various logistic regressions.
|
org.apache.ignite.ml.selection.cv |
Root package for cross-validation algorithms.
|
org.apache.ignite.ml.selection.scoring.cursor |
Util classes used for score calculation.
|
org.apache.ignite.ml.selection.scoring.evaluator |
Package for model evaluator classes.
|
org.apache.ignite.ml.structures.partition |
Contains internal APIs for dataset partitioned labeled datasets.
|
org.apache.ignite.ml.svm |
Contains main APIs for SVM(support vector machines) algorithms.
|
org.apache.ignite.ml.trainers |
Contains model trainers.
|
org.apache.ignite.ml.tree |
Root package for decision trees.
|
org.apache.ignite.ml.tree.boosting |
Contains implementation of gradient boosting on trees.
|
org.apache.ignite.ml.tree.data |
Contains data and data builder required for decision tree trainers built on top of partition based dataset.
|
org.apache.ignite.ml.tree.randomforest |
Contains random forest implementation classes.
|
Modifier and Type | Method and Description |
---|---|
<K,V> GmmModel |
GmmTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
protected <K,V> GmmModel |
GmmTrainer.updateModel(GmmModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
<K,V> KMeansModel |
KMeansTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
protected <K,V> KMeansModel |
KMeansTrainer.updateModel(KMeansModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
<K,V> BaggedModel |
BaggedTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
<K,V> BaggedModel |
BaggedTrainer.update(BaggedModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then trainer
updates model in according to new data and return new model.
|
protected <K,V> BaggedModel |
BaggedTrainer.updateModel(BaggedModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
This method is never called, instead of constructing logic of update from
DatasetTrainer.isUpdateable(M) and
DatasetTrainer.updateModel(M, org.apache.ignite.ml.dataset.DatasetBuilder<K, V>, org.apache.ignite.ml.preprocessing.Preprocessor<K, V>)
in this class we explicitly override update method. |
Modifier and Type | Method and Description |
---|---|
protected <V,K,C extends Serializable> |
GDBTrainer.computeInitialValue(LearningEnvironmentBuilder envBuilder,
DatasetBuilder<K,V> builder,
Preprocessor<K,V> preprocessor)
Compute mean value of label as first approximation.
|
<K,V> ModelsComposition |
GDBTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
protected <V,K> boolean |
GDBBinaryClassifierTrainer.learnLabels(DatasetBuilder<K,V> builder,
Preprocessor<K,V> preprocessor)
Defines unique labels in dataset if need (useful in case of classification).
|
protected <V,K> boolean |
GDBRegressionTrainer.learnLabels(DatasetBuilder<K,V> builder,
Preprocessor<K,V> preprocessor)
Defines unique labels in dataset if need (useful in case of classification).
|
protected abstract <V,K> boolean |
GDBTrainer.learnLabels(DatasetBuilder<K,V> builder,
Preprocessor<K,V> preprocessor)
Defines unique labels in dataset if need (useful in case of classification).
|
<K,V> List<IgniteModel<Vector,Double>> |
GDBLearningStrategy.learnModels(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Implementation of gradient boosting iterations.
|
<K,V> List<IgniteModel<Vector,Double>> |
GDBLearningStrategy.update(GDBTrainer.GDBModel mdlToUpdate,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then trainer
updates model in according to new data and return new model.
|
protected <K,V> ModelsComposition |
GDBTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
abstract <K,V> ConvergenceChecker<K,V> |
ConvergenceCheckerFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> vectorizer)
Create an instance of ConvergenceChecker.
|
Constructor and Description |
---|
ConvergenceChecker(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor,
double precision)
Constructs an instance of ConvergenceChecker.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ConvergenceChecker<K,V> |
MeanAbsValueConvergenceCheckerFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Create an instance of ConvergenceChecker.
|
Constructor and Description |
---|
MeanAbsValueConvergenceChecker(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor,
double precision)
Creates an instance of MeanAbsValueConvergenceChecker.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ConvergenceChecker<K,V> |
MedianOfMedianConvergenceCheckerFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Create an instance of ConvergenceChecker.
|
Constructor and Description |
---|
MedianOfMedianConvergenceChecker(long sampleSize,
IgniteFunction<Double,Double> lblMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor,
double precision)
Creates an instance of MedianOfMedianConvergenceChecker.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ConvergenceChecker<K,V> |
ConvergenceCheckerStubFactory.create(long sampleSize,
IgniteFunction<Double,Double> externalLbToInternalMapping,
Loss loss,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Create an instance of ConvergenceChecker.
|
Constructor and Description |
---|
ConvergenceCheckerStub(long sampleSize,
IgniteFunction externalLbToInternalMapping,
Loss loss,
DatasetBuilder datasetBuilder,
Preprocessor<K,V> preprocessor,
double precision)
Creates an instance of ConvergenceCheckerStub.
|
Modifier and Type | Method and Description |
---|---|
<K,V> IgniteModel<I,List<O>> |
TrainersParallelComposition.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
<K,V> IgniteModel<I,List<O>> |
TrainersParallelComposition.update(IgniteModel<I,List<O>> mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then trainer
updates model in according to new data and return new model.
|
protected <K,V> IgniteModel<I,List<O>> |
TrainersParallelComposition.updateModel(IgniteModel<I,List<O>> mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
This method is never called, instead of constructing logic of update from
DatasetTrainer.isUpdateable(IgniteModel) and DatasetTrainer.updateModel(IgniteModel, DatasetBuilder, Preprocessor)
in this class we explicitly override update method. |
Modifier and Type | Method and Description |
---|---|
<K,V> ModelsSequentialComposition<I,O1,O2> |
TrainersSequentialComposition.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
<K,V> ModelsSequentialComposition<I,O1,O2> |
TrainersSequentialComposition.update(ModelsSequentialComposition<I,O1,O2> mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then trainer
updates model in according to new data and return new model.
|
protected <K,V> ModelsSequentialComposition<I,O1,O2> |
TrainersSequentialComposition.updateModel(ModelsSequentialComposition<I,O1,O2> mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
This method is never called, instead of constructing logic of update from
DatasetTrainer.isUpdateable(IgniteModel) and
DatasetTrainer.updateModel(IgniteModel, DatasetBuilder, Preprocessor)
in this class we explicitly override update method. |
Modifier and Type | Method and Description |
---|---|
<K,V> StackedModel<IS,IA,O,AM> |
StackedDatasetTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
<K,V> StackedModel<IS,IA,O,AM> |
StackedDatasetTrainer.update(StackedModel<IS,IA,O,AM> mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then trainer
updates model in according to new data and return new model.
|
protected <K,V> StackedModel<IS,IA,O,AM> |
StackedDatasetTrainer.updateModel(StackedModel<IS,IA,O,AM> mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
This method is never called, instead of constructing logic of update from
DatasetTrainer.isUpdateable(IgniteModel) and
DatasetTrainer.updateModel(IgniteModel, DatasetBuilder, Preprocessor)
in this class we explicitly override update method. |
Modifier and Type | Method and Description |
---|---|
static <K,V,C extends Serializable,CO extends Serializable> |
DatasetFactory.createSimpleDataset(DatasetBuilder<K,V> datasetBuilder,
LearningEnvironmentBuilder envBuilder,
PartitionContextBuilder<K,V,C> partCtxBuilder,
Preprocessor<K,V> featureExtractor)
Creates a new instance of distributed
SimpleDataset using the specified partCtxBuilder and featureExtractor . |
static <K,V,CO extends Serializable> |
DatasetFactory.createSimpleDataset(DatasetBuilder<K,V> datasetBuilder,
LearningEnvironmentBuilder envBuilder,
Preprocessor<K,V> featureExtractor)
Creates a new instance of distributed
SimpleDataset using the specified featureExtractor . |
static <K,V,C extends Serializable,CO extends Serializable> |
DatasetFactory.createSimpleDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
LearningEnvironmentBuilder envBuilder,
PartitionContextBuilder<K,V,C> partCtxBuilder,
Preprocessor<K,V> featureExtractor)
Creates a new instance of distributed
SimpleDataset using the specified partCtxBuilder and featureExtractor . |
static <K,V,CO extends Serializable> |
DatasetFactory.createSimpleDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
LearningEnvironmentBuilder envBuilder,
Preprocessor<K,V> featureExtractor)
Creates a new instance of distributed
SimpleDataset using the specified featureExtractor . |
static <K,V,CO extends Serializable> |
DatasetFactory.createSimpleDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
Preprocessor<K,V> featureExtractor)
Creates a new instance of distributed
SimpleDataset using the specified featureExtractor . |
static <K,V,C extends Serializable,CO extends Serializable> |
DatasetFactory.createSimpleDataset(Map<K,V> upstreamMap,
int partitions,
LearningEnvironmentBuilder envBuilder,
PartitionContextBuilder<K,V,C> partCtxBuilder,
Preprocessor<K,V> featureExtractor)
Creates a new instance of local
SimpleDataset using the specified partCtxBuilder and featureExtractor . |
static <K,V,CO extends Serializable> |
DatasetFactory.createSimpleDataset(Map<K,V> upstreamMap,
int partitions,
LearningEnvironmentBuilder envBuilder,
Preprocessor<K,V> featureExtractor)
Creates a new instance of local
SimpleDataset using the specified featureExtractor . |
static <K,V,C extends Serializable,CO extends Serializable> |
DatasetFactory.createSimpleLabeledDataset(DatasetBuilder<K,V> datasetBuilder,
LearningEnvironmentBuilder envBuilder,
PartitionContextBuilder<K,V,C> partCtxBuilder,
Preprocessor<K,V> vectorizer)
Creates a new instance of distributed
SimpleLabeledDataset using the specified partCtxBuilder ,
featureExtractor and lbExtractor . |
static <K,V,CO extends Serializable> |
DatasetFactory.createSimpleLabeledDataset(DatasetBuilder<K,V> datasetBuilder,
LearningEnvironmentBuilder envBuilder,
Preprocessor<K,V> vectorizer)
Creates a new instance of distributed
SimpleLabeledDataset using the specified featureExtractor
and lbExtractor . |
static <K,V,C extends Serializable,CO extends Serializable> |
DatasetFactory.createSimpleLabeledDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
LearningEnvironmentBuilder envBuilder,
PartitionContextBuilder<K,V,C> partCtxBuilder,
Preprocessor<K,V> vectorizer)
Creates a new instance of distributed
SimpleLabeledDataset using the specified partCtxBuilder ,
featureExtractor and lbExtractor . |
static <K,V,CO extends Serializable> |
DatasetFactory.createSimpleLabeledDataset(Ignite ignite,
LearningEnvironmentBuilder envBuilder,
IgniteCache<K,V> upstreamCache,
Preprocessor<K,V> vectorizer)
Creates a new instance of distributed
SimpleLabeledDataset using the specified featureExtractor
and lbExtractor . |
static <K,V,C extends Serializable,CO extends Serializable> |
DatasetFactory.createSimpleLabeledDataset(Map<K,V> upstreamMap,
int partitions,
LearningEnvironmentBuilder envBuilder,
PartitionContextBuilder<K,V,C> partCtxBuilder,
Preprocessor<K,V> vectorizer)
Creates a new instance of local
SimpleLabeledDataset using the specified partCtxBuilder , featureExtractor and lbExtractor . |
static <K,V,CO extends Serializable> |
DatasetFactory.createSimpleLabeledDataset(Map<K,V> upstreamMap,
LearningEnvironmentBuilder envBuilder,
int partitions,
Preprocessor<K,V> vectorizer)
Creates a new instance of local
SimpleLabeledDataset using the specified featureExtractor and
lbExtractor . |
Modifier and Type | Class and Description |
---|---|
static class |
ExtractionUtils.ArrayLikeVectorizer<K,V>
Vectorizer extracting vectors from array-like structure with finite size and integer coordinates.
|
static class |
ExtractionUtils.DefaultLabelVectorizer<K,V,C extends Serializable>
Vectorizer with double-label containing on same level as feature values.
|
static class |
ExtractionUtils.IntCoordVectorizer<K,V>
Vectorizer with integer coordinates.
|
static class |
ExtractionUtils.StringCoordVectorizer<K,V>
Vectorizer with String-coordinates.
|
class |
Vectorizer<K,V,C extends Serializable,L>
Class for extracting labeled vectors from upstream.
|
static class |
Vectorizer.VectorizerAdapter<K,V,C extends Serializable,L>
Utility class for convenient overridings.
|
Modifier and Type | Class and Description |
---|---|
class |
BinaryObjectVectorizer<K>
Vectorizer on binary objects.
|
class |
DoubleArrayVectorizer<K>
Vectorizer on arrays of doubles.
|
class |
DummyVectorizer<K>
Vectorizer on Vector.
|
class |
LabeledDummyVectorizer<K,L>
Vectorizer on LabeledVector.
|
Constructor and Description |
---|
BootstrappedDatasetBuilder(Preprocessor<K,V> preprocessor,
int samplesCnt,
double subsampleSize)
Creates an instance of BootstrappedDatasetBuilder.
|
Constructor and Description |
---|
FeatureMatrixWithLabelsOnHeapDataBuilder(Preprocessor<K,V> preprocessor)
Constructs a new instance of decision tree data builder.
|
Constructor and Description |
---|
SimpleDatasetDataBuilder(Preprocessor<K,V> preprocessor)
Construct a new instance of partition
data builder that makes SimpleDatasetData . |
SimpleLabeledDatasetDataBuilder(Preprocessor<K,V> vectorizer)
Constructs a new instance of partition
data builder that makes SimpleLabeledDatasetData . |
Modifier and Type | Method and Description |
---|---|
protected <K,V> M |
KNNTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
protected <K,V> M |
KNNTrainer.updateModel(M mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains new model taken previous one as a first approximation.
|
Constructor and Description |
---|
KNNPartitionDataBuilder(Preprocessor<K,V> preprocessor,
SpatialIndexType spatialIdxType,
DistanceMeasure distanceMeasure)
Constructs a new instance of KNN partition data builder.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ANNClassificationModel |
ANNClassificationTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
protected <K,V> ANNClassificationModel |
ANNClassificationTrainer.updateModel(ANNClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
static <K,V,C extends Serializable> |
KNNUtils.buildDataset(LearningEnvironmentBuilder envBuilder,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> vectorizer)
Builds dataset.
|
Modifier and Type | Method and Description |
---|---|
<K,V> MultiClassModel<M> |
OneVsRestTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
protected <K,V> MultiClassModel<M> |
OneVsRestTrainer.updateModel(MultiClassModel<M> newMdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
<K,V> DiscreteNaiveBayesModel |
DiscreteNaiveBayesTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
protected <K,V> DiscreteNaiveBayesModel |
DiscreteNaiveBayesTrainer.updateModel(DiscreteNaiveBayesModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
<K,V> GaussianNaiveBayesModel |
GaussianNaiveBayesTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
protected <K,V> GaussianNaiveBayesModel |
GaussianNaiveBayesTrainer.updateModel(GaussianNaiveBayesModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
<K,V> MultilayerPerceptron |
MLPTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
protected <K,V> MultilayerPerceptron |
MLPTrainer.updateModel(MultilayerPerceptron lastLearnedMdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
Preprocessor<K,V> |
PipelineMdl.getPreprocessor() |
Modifier and Type | Method and Description |
---|---|
PipelineMdl<K,V> |
PipelineMdl.withPreprocessor(Preprocessor<K,V> preprocessor) |
Modifier and Type | Method and Description |
---|---|
default Preprocessor<K,V> |
PreprocessingTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
default Preprocessor<K,V> |
PreprocessingTrainer.fit(Ignite ignite,
IgniteCache<K,V> cache,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
Preprocessor<K,V> |
PreprocessingTrainer.fit(LearningEnvironmentBuilder envBuilder,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
default Preprocessor<K,V> |
PreprocessingTrainer.fit(LearningEnvironmentBuilder envBuilder,
Ignite ignite,
IgniteCache<K,V> cache,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
default Preprocessor<K,V> |
PreprocessingTrainer.fit(LearningEnvironmentBuilder envBuilder,
Map<K,V> data,
int parts,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
default Preprocessor<K,V> |
PreprocessingTrainer.fit(Map<K,V> data,
int parts,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
default <L1,L2> Preprocessor<K,V> |
Preprocessor.map(IgniteFunction<LabeledVector<L1>,LabeledVector<L2>> func)
Map vectorizer answer.
|
Modifier and Type | Method and Description |
---|---|
default Preprocessor<K,V> |
PreprocessingTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
default Preprocessor<K,V> |
PreprocessingTrainer.fit(Ignite ignite,
IgniteCache<K,V> cache,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
Preprocessor<K,V> |
PreprocessingTrainer.fit(LearningEnvironmentBuilder envBuilder,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
default Preprocessor<K,V> |
PreprocessingTrainer.fit(LearningEnvironmentBuilder envBuilder,
Ignite ignite,
IgniteCache<K,V> cache,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
default Preprocessor<K,V> |
PreprocessingTrainer.fit(LearningEnvironmentBuilder envBuilder,
Map<K,V> data,
int parts,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
default Preprocessor<K,V> |
PreprocessingTrainer.fit(Map<K,V> data,
int parts,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
default <K,V> LearningEnvironment |
PreprocessingTrainer.learningEnvironment(Preprocessor<K,V> basePreprocessor)
Returns local learning environment with initialized deploying context by base preptocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
BinarizationPreprocessor<K,V>
Preprocessing function that makes binarization.
|
Modifier and Type | Method and Description |
---|---|
BinarizationPreprocessor<K,V> |
BinarizationTrainer.fit(LearningEnvironmentBuilder envBuilder,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
Constructor and Description |
---|
BinarizationPreprocessor(double threshold,
Preprocessor<K,V> basePreprocessor)
Constructs a new instance of Binarization preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
MappedPreprocessor<K,V,L0,L1>
Mapped Preprocessor.
|
class |
PatchedPreprocessor<K,V,L1,L2>
Preprocessing function that makes binarization.
|
Modifier and Type | Field and Description |
---|---|
protected Preprocessor<K,V> |
MappedPreprocessor.original
Original preprocessor.
|
Constructor and Description |
---|
MappedPreprocessor(Preprocessor<K,V> original,
IgniteFunction<LabeledVector<L0>,LabeledVector<L1>> andThen)
Creates an instance of MappedPreprocessor.
|
PatchedPreprocessor(IgniteFunction<LabeledVector<L1>,LabeledVector<L2>> lbPatcher,
Preprocessor<K,V> basePreprocessor)
Constructs a new instance of Binarization preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
EncoderPreprocessor<K,V>
Preprocessing function that makes encoding.
|
Modifier and Type | Field and Description |
---|---|
protected Preprocessor<K,V> |
EncoderPreprocessor.basePreprocessor
Base preprocessor.
|
Modifier and Type | Method and Description |
---|---|
EncoderPreprocessor<K,V> |
EncoderTrainer.fit(LearningEnvironmentBuilder envBuilder,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
Constructor and Description |
---|
EncoderPreprocessor(Map<String,Integer>[] encodingValues,
Preprocessor<K,V> basePreprocessor,
Set<Integer> handledIndices)
Constructs a new instance of String Encoder preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
OneHotEncoderPreprocessor<K,V>
Preprocessing function that makes one-hot encoding.
|
Constructor and Description |
---|
OneHotEncoderPreprocessor(Map<String,Integer>[] encodingValues,
Preprocessor<K,V> basePreprocessor,
Set<Integer> handledIndices)
Constructs a new instance of One Hot Encoder preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
StringEncoderPreprocessor<K,V>
Preprocessing function that makes String encoding.
|
Constructor and Description |
---|
StringEncoderPreprocessor(Map<String,Integer>[] encodingValues,
Preprocessor<K,V> basePreprocessor,
Set<Integer> handledIndices)
Constructs a new instance of String Encoder preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
ImputerPreprocessor<K,V>
Preprocessing function that makes imputing.
|
Modifier and Type | Method and Description |
---|---|
ImputerPreprocessor<K,V> |
ImputerTrainer.fit(LearningEnvironmentBuilder envBuilder,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
Constructor and Description |
---|
ImputerPreprocessor(Vector imputingValues,
Preprocessor<K,V> basePreprocessor)
Constructs a new instance of imputing preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
MaxAbsScalerPreprocessor<K,V>
The preprocessing function that makes maxabsscaling, transforms features to the scale
[-1,+1] . |
Modifier and Type | Method and Description |
---|---|
MaxAbsScalerPreprocessor<K,V> |
MaxAbsScalerTrainer.fit(LearningEnvironmentBuilder envBuilder,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
Constructor and Description |
---|
MaxAbsScalerPreprocessor(double[] maxAbs,
Preprocessor<K,V> basePreprocessor)
Constructs a new instance of maxabsscaling preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
MinMaxScalerPreprocessor<K,V>
Preprocessing function that makes minmaxscaling.
|
Modifier and Type | Method and Description |
---|---|
MinMaxScalerPreprocessor<K,V> |
MinMaxScalerTrainer.fit(LearningEnvironmentBuilder envBuilder,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
Constructor and Description |
---|
MinMaxScalerPreprocessor(double[] min,
double[] max,
Preprocessor<K,V> basePreprocessor)
Constructs a new instance of minmaxscaling preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
NormalizationPreprocessor<K,V>
Preprocessing function that makes normalization.
|
Modifier and Type | Method and Description |
---|---|
NormalizationPreprocessor<K,V> |
NormalizationTrainer.fit(LearningEnvironmentBuilder envBuilder,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
Constructor and Description |
---|
NormalizationPreprocessor(int p,
Preprocessor<K,V> basePreprocessor)
Constructs a new instance of Normalization preprocessor.
|
Modifier and Type | Class and Description |
---|---|
class |
StandardScalerPreprocessor<K,V>
The preprocessing function that makes standard scaling, transforms features to make
mean equal to 0
and variance equal to 1 . |
Modifier and Type | Method and Description |
---|---|
StandardScalerPreprocessor<K,V> |
StandardScalerTrainer.fit(LearningEnvironmentBuilder envBuilder,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> basePreprocessor)
Fits preprocessor.
|
Constructor and Description |
---|
StandardScalerPreprocessor(double[] means,
double[] sigmas,
Preprocessor<K,V> basePreprocessor)
Constructs a new instance of standardscaling preprocessor.
|
Modifier and Type | Method and Description |
---|---|
<K,V> LinearRegressionModel |
LinearRegressionLSQRTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
<K,V> LinearRegressionModel |
LinearRegressionSGDTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
protected <K,V> LinearRegressionModel |
LinearRegressionLSQRTrainer.updateModel(LinearRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
protected <K,V> LinearRegressionModel |
LinearRegressionSGDTrainer.updateModel(LinearRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
<K,V> LogisticRegressionModel |
LogisticRegressionSGDTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
protected <K,V> LogisticRegressionModel |
LogisticRegressionSGDTrainer.updateModel(LogisticRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Field and Description |
---|---|
protected Preprocessor<K,V> |
AbstractCrossValidation.preprocessor
Preprocessor.
|
Modifier and Type | Method and Description |
---|---|
AbstractCrossValidation<M,L,K,V> |
AbstractCrossValidation.withPreprocessor(Preprocessor<K,V> preprocessor) |
Constructor and Description |
---|
CacheBasedLabelPairCursor(IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
Preprocessor<K,V> preprocessor,
IgniteModel<Vector,L> mdl)
Constructs a new instance of cache based truth with prediction cursor.
|
CacheBasedLabelPairCursor(IgniteCache<K,V> upstreamCache,
Preprocessor<K,V> preprocessor,
IgniteModel<Vector,L> mdl)
Constructs a new instance of cache based truth with prediction cursor.
|
LocalLabelPairCursor(Map<K,V> upstreamMap,
IgniteBiPredicate<K,V> filter,
Preprocessor<K,V> preprocessor,
IgniteModel<Vector,L> mdl)
Constructs a new instance of local truth with prediction cursor.
|
Modifier and Type | Method and Description |
---|---|
static <K,V> BinaryClassificationMetricValues |
Evaluator.evaluate(IgniteCache<K,V> dataCache,
IgniteBiPredicate<K,V> filter,
IgniteModel<Vector,Double> mdl,
Preprocessor<K,V> preprocessor)
Computes the given metrics on the given cache.
|
static <L,K,V> double |
Evaluator.evaluate(IgniteCache<K,V> dataCache,
IgniteBiPredicate<K,V> filter,
IgniteModel<Vector,L> mdl,
Preprocessor<K,V> preprocessor,
Metric<L> metric)
Computes the given metric on the given cache.
|
static <K,V> BinaryClassificationMetricValues |
Evaluator.evaluate(IgniteCache<K,V> dataCache,
IgniteModel<Vector,Double> mdl,
Preprocessor<K,V> preprocessor)
Computes the given metrics on the given cache.
|
static <L,K,V> double |
Evaluator.evaluate(IgniteCache<K,V> dataCache,
IgniteModel<Vector,L> mdl,
Preprocessor<K,V> preprocessor,
Metric<L> metric)
Computes the given metric on the given cache.
|
static <K,V> BinaryClassificationMetricValues |
Evaluator.evaluate(Map<K,V> dataCache,
IgniteBiPredicate<K,V> filter,
IgniteModel<Vector,Double> mdl,
Preprocessor<K,V> preprocessor)
Computes the given metrics on the given cache.
|
static <L,K,V> double |
Evaluator.evaluate(Map<K,V> dataCache,
IgniteBiPredicate<K,V> filter,
IgniteModel<Vector,L> mdl,
Preprocessor<K,V> preprocessor,
Metric<L> metric)
Computes the given metric on the given cache.
|
static <K,V> BinaryClassificationMetricValues |
Evaluator.evaluate(Map<K,V> dataCache,
IgniteModel<Vector,Double> mdl,
Preprocessor<K,V> preprocessor)
Computes the given metrics on the given cache.
|
static <L,K,V> double |
Evaluator.evaluate(Map<K,V> dataCache,
IgniteModel<Vector,L> mdl,
Preprocessor<K,V> preprocessor,
Metric<L> metric)
Computes the given metric on the given cache.
|
static <K,V> RegressionMetricValues |
Evaluator.evaluateRegression(IgniteCache<K,V> dataCache,
IgniteBiPredicate<K,V> filter,
IgniteModel<Vector,Double> mdl,
Preprocessor<K,V> preprocessor)
Computes the regression metrics on the given cache.
|
Constructor and Description |
---|
LabeledDatasetPartitionDataBuilderOnHeap(Preprocessor<K,V> preprocessor)
Constructs a new instance of SVM partition data builder.
|
LabelPartitionDataBuilderOnHeap(Preprocessor<K,V> preprocessor)
Constructs a new instance of Label partition data builder.
|
Modifier and Type | Method and Description |
---|---|
<K,V> SVMLinearClassificationModel |
SVMLinearClassificationTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
protected <K,V> SVMLinearClassificationModel |
SVMLinearClassificationTrainer.updateModel(SVMLinearClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Interface and Description |
---|---|
interface |
FeatureLabelExtractor<K,V,L>
Class fro extracting features and vectors from upstream.
|
Modifier and Type | Method and Description |
---|---|
<K,V> M |
DatasetTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor,
LearningEnvironment learningEnvironment)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiPredicate<K,V> filter,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(Ignite ignite,
IgniteCache<K,V> cache,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(Map<K,V> data,
IgniteBiPredicate<K,V> filter,
int parts,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(Map<K,V> data,
int parts,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
<K,V> AdaptableDatasetModel<I,O,IW,OW,M> |
AdaptableDatasetTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
protected abstract <K,V> M |
DatasetTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.update(M mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then trainer
updates model in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiPredicate<K,V> filter,
Preprocessor<K,V> preprocessor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Ignite ignite,
IgniteCache<K,V> cache,
Preprocessor<K,V> preprocessor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Map<K,V> data,
IgniteBiPredicate<K,V> filter,
int parts,
Preprocessor<K,V> preprocessor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Map<K,V> data,
int parts,
Preprocessor<K,V> preprocessor)
Gets state of model in arguments, update in according to new data and return new model.
|
protected <K,V> AdaptableDatasetModel<I,O,IW,OW,M> |
AdaptableDatasetTrainer.updateModel(AdaptableDatasetModel<I,O,IW,OW,M> mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
protected abstract <K,V> M |
DatasetTrainer.updateModel(M mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
<K,V> DecisionTreeNode |
DecisionTree.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
protected <K,V> DecisionTreeNode |
DecisionTree.updateModel(DecisionTreeNode mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains new model based on dataset because there is no valid approach to update decision trees.
|
Modifier and Type | Method and Description |
---|---|
<K,V> List<IgniteModel<Vector,Double>> |
GDBOnTreesLearningStrategy.update(GDBTrainer.GDBModel mdlToUpdate,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> vectorizer)
Gets state of model in arguments, compare it with training parameters of trainer and if they are fit then trainer
updates model in according to new data and return new model.
|
Constructor and Description |
---|
DecisionTreeDataBuilder(Preprocessor<K,V> preprocessor,
boolean buildIdx)
Constructs a new instance of decision tree data builder.
|
Modifier and Type | Method and Description |
---|---|
<K,V> ModelsComposition |
RandomForestTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
protected <K,V> ModelsComposition |
RandomForestTrainer.updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains new model taken previous one as a first approximation.
|
GridGain In-Memory Computing Platform : ver. 8.9.14 Release Date : November 5 2024