Package | Description |
---|---|
org.apache.ignite.ml.nn |
Contains neural networks and related classes.
|
org.apache.ignite.ml.regressions.linear |
Contains various linear regressions.
|
Modifier and Type | Field and Description |
---|---|
protected MultilayerPerceptron |
MultilayerPerceptron.below
MLP which is 'below' this MLP (i.e. below output goes to this MLP as input).
|
Modifier and Type | Method and Description |
---|---|
MultilayerPerceptron |
MultilayerPerceptron.add(MultilayerPerceptron above)
Create MLP where this MLP output is fed as input to added MLP.
|
<K,V> MultilayerPerceptron |
MLPTrainer.fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
MultilayerPerceptron |
MultilayerPerceptron.setBias(int layerIdx,
int neuronIdx,
double val)
Set the bias of given neuron in given layer.
|
MultilayerPerceptron |
MultilayerPerceptron.setBiases(int layerIdx,
Vector bias)
Sets the biases of layer with a given index.
|
MultilayerPerceptron |
MultilayerPerceptron.setParameters(Vector vector)
Set parameters.
|
MultilayerPerceptron |
MultilayerPerceptron.setWeight(int layerIdx,
int fromNeuron,
int toNeuron,
double val)
Set the weight of neuron with given index in previous layer to neuron with given index in given layer.
|
MultilayerPerceptron |
MultilayerPerceptron.setWeights(int layerIdx,
Matrix weights)
Sets the weighs of layer with a given index.
|
protected <K,V> MultilayerPerceptron |
MLPTrainer.updateModel(MultilayerPerceptron lastLearnedMdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
UpdatesStrategy<? super MultilayerPerceptron,P> |
MLPTrainer.getUpdatesStgy()
Get the update strategy that defines how to update model parameters during the training.
|
Modifier and Type | Method and Description |
---|---|
MultilayerPerceptron |
MultilayerPerceptron.add(MultilayerPerceptron above)
Create MLP where this MLP output is fed as input to added MLP.
|
boolean |
MLPTrainer.isUpdateable(MultilayerPerceptron mdl) |
protected <K,V> MultilayerPerceptron |
MLPTrainer.updateModel(MultilayerPerceptron lastLearnedMdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
Modifier and Type | Method and Description |
---|---|
MLPTrainer<P> |
MLPTrainer.withUpdatesStgy(UpdatesStrategy<? super MultilayerPerceptron,P> updatesStgy)
Set up the update strategy that defines how to update model parameters during the training.
|
Constructor and Description |
---|
MultilayerPerceptron(MultilayerPerceptron above,
MultilayerPerceptron below)
Create MLP from two MLPs: first stacked on second.
|
Constructor and Description |
---|
MLPTrainer(IgniteFunction<Dataset<EmptyContext,SimpleLabeledDatasetData>,MLPArchitecture> archSupplier,
IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> loss,
UpdatesStrategy<? super MultilayerPerceptron,P> updatesStgy,
int maxIterations,
int batchSize,
int locIterations,
long seed)
Constructs a new instance of multilayer perceptron trainer.
|
MLPTrainer(MLPArchitecture arch,
IgniteFunction<Vector,IgniteDifferentiableVectorToDoubleFunction> loss,
UpdatesStrategy<? super MultilayerPerceptron,P> updatesStgy,
int maxIterations,
int batchSize,
int locIterations,
long seed)
Constructs a new instance of multilayer perceptron trainer.
|
Modifier and Type | Method and Description |
---|---|
UpdatesStrategy<? super MultilayerPerceptron,P> |
LinearRegressionSGDTrainer.getUpdatesStgy()
Get the update strategy.
|
Constructor and Description |
---|
LinearRegressionSGDTrainer(UpdatesStrategy<? super MultilayerPerceptron,P> updatesStgy)
Constructs a new instance of linear regression SGD trainer.
|
LinearRegressionSGDTrainer(UpdatesStrategy<? super MultilayerPerceptron,P> updatesStgy,
int maxIterations,
int batchSize,
int locIterations,
long seed)
Constructs a new instance of linear regression SGD trainer.
|
GridGain In-Memory Computing Platform : ver. 8.9.14 Release Date : November 5 2024