Package | Description |
---|---|
org.apache.ignite.ml.dataset |
Base package for machine learning dataset classes.
|
org.apache.ignite.ml.dataset.impl.cache |
Base package for cache based implementation of machine learning dataset.
|
org.apache.ignite.ml.dataset.impl.local |
Base package for local implementation of machine learning dataset.
|
org.apache.ignite.ml.dataset.primitive |
Package that contains basic primitives build on top of
Dataset . |
org.apache.ignite.ml.math.functions |
Contains serializable functions for distributed code algebra.
|
org.apache.ignite.ml.math.primitives.matrix |
Contains matrix related classes.
|
org.apache.ignite.ml.math.primitives.matrix.impl |
Contains several matrix implementations.
|
org.apache.ignite.ml.math.primitives.matrix.storage |
Contains several matrix storages.
|
org.apache.ignite.ml.math.util |
Some math utils.
|
Modifier and Type | Method and Description |
---|---|
default <R> R |
Dataset.computeWithCtx(IgniteTriFunction<C,D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce)
Applies the specified
map function to every partition data , context and
LearningEnvironment in the dataset and then reduces map results to final
result by using the reduce function. |
<R> R |
Dataset.computeWithCtx(IgniteTriFunction<C,D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data , context and partition
index in the dataset and then reduces map results to final result by using the reduce function. |
Modifier and Type | Method and Description |
---|---|
<R> R |
CacheBasedDataset.computeWithCtx(IgniteTriFunction<C,D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data , context and partition
index in the dataset and then reduces map results to final result by using the reduce function. |
Modifier and Type | Method and Description |
---|---|
<R> R |
LocalDataset.computeWithCtx(IgniteTriFunction<C,D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data , context and partition
index in the dataset and then reduces map results to final result by using the reduce function. |
Modifier and Type | Method and Description |
---|---|
<R> R |
DatasetWrapper.computeWithCtx(IgniteTriFunction<C,D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data , context and partition
index in the dataset and then reduces map results to final result by using the reduce function. |
Modifier and Type | Method and Description |
---|---|
default <V> IgniteTriFunction<A,B,C,V> |
IgniteTriFunction.andThen(Function<? super R,? extends V> after) |
Modifier and Type | Method and Description |
---|---|
static <A,B,C,D> IgniteCurriedTriFunction<A,B,C,D> |
Functions.curry(IgniteTriFunction<A,B,C,D> f)
Transform tri-function of the form (a, b, c) -> d into a function of form a -> (b -> (c -> d)).
|
Modifier and Type | Method and Description |
---|---|
void |
AbstractMatrix.compute(int row,
int col,
IgniteTriFunction<Integer,Integer,Double,Double> f)
Replace matrix entry with value oldVal at (row, col) with result of computing f(row, col, oldVal).
|
void |
Matrix.compute(int row,
int col,
IgniteTriFunction<Integer,Integer,Double,Double> f)
Replace matrix entry with value oldVal at (row, col) with result of computing f(row, col, oldVal).
|
Modifier and Type | Method and Description |
---|---|
void |
SparseMatrix.compute(int row,
int col,
IgniteTriFunction<Integer,Integer,Double,Double> f)
Replace matrix entry with value oldVal at (row, col) with result of computing f(row, col, oldVal).
|
Modifier and Type | Method and Description |
---|---|
void |
SparseMatrixStorage.compute(int row,
int col,
IgniteTriFunction<Integer,Integer,Double,Double> f) |
Modifier and Type | Method and Description |
---|---|
static Vector |
MatrixUtil.zipWith(Vector v1,
Vector v2,
IgniteTriFunction<Double,Double,Integer,Double> f)
Zip two vectors with given tri-function taking as third argument position in vector (i.e. apply binary function
to both vector elementwise and construct vector from results).
|
GridGain In-Memory Computing Platform : ver. 8.9.14 Release Date : November 5 2024