Package | Description |
---|---|
org.apache.ignite.ml.composition.stacking |
Contains classes used for training with stacking technique.
|
org.apache.ignite.ml.dataset |
Base package for machine learning dataset classes.
|
org.apache.ignite.ml.dataset.impl.cache |
Base package for cache based implementation of machine learning dataset.
|
org.apache.ignite.ml.dataset.impl.local |
Base package for local implementation of machine learning dataset.
|
org.apache.ignite.ml.dataset.primitive |
Package that contains basic primitives build on top of
Dataset . |
Modifier and Type | Method and Description |
---|---|
SimpleStackedDatasetTrainer<I,O,AM,L> |
SimpleStackedDatasetTrainer.withAggregatorInputMerger(IgniteBinaryOperator<I> merger)
Specify binary operator used to merge submodels outputs to one.
|
StackedDatasetTrainer<IS,IA,O,AM,L> |
StackedDatasetTrainer.withAggregatorInputMerger(IgniteBinaryOperator<IA> merger)
Specify binary operator used to merge submodels outputs to one.
|
StackedVectorDatasetTrainer<O,AM,L> |
StackedVectorDatasetTrainer.withAggregatorInputMerger(IgniteBinaryOperator<Vector> merger)
Specify binary operator used to merge submodels outputs to one.
|
Constructor and Description |
---|
SimpleStackedDatasetTrainer(DatasetTrainer<AM,L> aggregatingTrainer,
IgniteBinaryOperator<I> aggregatingInputMerger)
Construct instance of this class.
|
SimpleStackedDatasetTrainer(DatasetTrainer<AM,L> aggregatingTrainer,
IgniteBinaryOperator<I> aggregatingInputMerger,
IgniteFunction<I,I> submodelInput2AggregatingInputConverter,
IgniteFunction<Vector,I> vector2SubmodelInputConverter,
IgniteFunction<I,Vector> submodelOutput2VectorConverter)
Construct instance of this class.
|
StackedDatasetTrainer(DatasetTrainer<AM,L> aggregatorTrainer,
IgniteBinaryOperator<IA> aggregatingInputMerger,
IgniteFunction<IS,IA> submodelInput2AggregatingInputConverter)
Constructs instance of this class.
|
StackedDatasetTrainer(DatasetTrainer<AM,L> aggregatorTrainer,
IgniteBinaryOperator<IA> aggregatingInputMerger,
IgniteFunction<IS,IA> submodelInput2AggregatingInputConverter,
List<DatasetTrainer<IgniteModel<IS,IA>,L>> submodelsTrainers,
IgniteFunction<Vector,IS> vector2SubmodelInputConverter,
IgniteFunction<IA,Vector> submodelOutput2VectorConverter)
Create instance of this class.
|
Modifier and Type | Method and Description |
---|---|
default <R> R |
Dataset.compute(IgniteBiFunction<D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce)
Applies the specified
map function to every partition data and LearningEnvironment
in the dataset and then reduces map results to final result by using the reduce function. |
<R> R |
Dataset.compute(IgniteBiFunction<D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and LearningEnvironment
in the dataset and then reduces map results to final result by using the reduce function. |
default <R> R |
Dataset.compute(IgniteFunction<D,R> map,
IgniteBinaryOperator<R> reduce)
Applies the specified
map function to every partition data in the dataset and then reduces
map results to final result by using the reduce function. |
default <R> R |
Dataset.compute(IgniteFunction<D,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data in the dataset and then reduces
map results to final result by using the reduce function. |
default <R> R |
Dataset.computeWithCtx(IgniteBiFunction<C,D,R> map,
IgniteBinaryOperator<R> reduce)
Applies the specified
map function to every partition data and context in the dataset
and then reduces map results to final result by using the reduce function. |
default <R> R |
Dataset.computeWithCtx(IgniteBiFunction<C,D,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and context in the dataset
and then reduces map results to final result by using the reduce function. |
default <R> R |
Dataset.computeWithCtx(IgniteTriFunction<C,D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce)
Applies the specified
map function to every partition data , context and
LearningEnvironment in the dataset and then reduces map results to final
result by using the reduce function. |
<R> R |
Dataset.computeWithCtx(IgniteTriFunction<C,D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data , context and partition
index in the dataset and then reduces map results to final result by using the reduce function. |
Modifier and Type | Method and Description |
---|---|
<R> R |
CacheBasedDataset.compute(IgniteBiFunction<D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and LearningEnvironment
in the dataset and then reduces map results to final result by using the reduce function. |
<R> R |
CacheBasedDataset.computeWithCtx(IgniteTriFunction<C,D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data , context and partition
index in the dataset and then reduces map results to final result by using the reduce function. |
Modifier and Type | Method and Description |
---|---|
<R> R |
LocalDataset.compute(IgniteBiFunction<D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and LearningEnvironment
in the dataset and then reduces map results to final result by using the reduce function. |
<R> R |
LocalDataset.computeWithCtx(IgniteTriFunction<C,D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data , context and partition
index in the dataset and then reduces map results to final result by using the reduce function. |
Modifier and Type | Method and Description |
---|---|
<R> R |
DatasetWrapper.compute(IgniteBiFunction<D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and LearningEnvironment
in the dataset and then reduces map results to final result by using the reduce function. |
<R> R |
DatasetWrapper.computeWithCtx(IgniteTriFunction<C,D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data , context and partition
index in the dataset and then reduces map results to final result by using the reduce function. |
GridGain In-Memory Computing Platform : ver. 8.9.14 Release Date : November 5 2024