Package | Description |
---|---|
org.apache.ignite.ml.composition |
Contains classes for ensemble of models implementation.
|
org.apache.ignite.ml.composition.combinators.sequential |
Contains sequential combinators of trainers and models.
|
org.apache.ignite.ml.dataset |
Base package for machine learning dataset classes.
|
org.apache.ignite.ml.dataset.feature.extractor |
Package for upstream object vectorizations.
|
org.apache.ignite.ml.dataset.feature.extractor.impl |
Package contains default implementations of
Vectorizer . |
org.apache.ignite.ml.dataset.impl.cache |
Base package for cache based implementation of machine learning dataset.
|
org.apache.ignite.ml.dataset.impl.local |
Base package for local implementation of machine learning dataset.
|
org.apache.ignite.ml.dataset.primitive |
Package that contains basic primitives build on top of
Dataset . |
org.apache.ignite.ml.math.functions |
Contains serializable functions for distributed code algebra.
|
org.apache.ignite.ml.math.primitives.matrix |
Contains matrix related classes.
|
org.apache.ignite.ml.math.primitives.vector |
Contains vector related classes.
|
org.apache.ignite.ml.math.primitives.vector.impl |
Contains several vector implementations.
|
org.apache.ignite.ml.math.util |
Some math utils.
|
org.apache.ignite.ml.preprocessing |
Base package for machine learning preprocessing classes.
|
org.apache.ignite.ml.preprocessing.binarization |
Contains binarization preprocessor.
|
org.apache.ignite.ml.preprocessing.developer |
Contains Developer API preprocessors.
|
org.apache.ignite.ml.preprocessing.encoding |
Contains encoding preprocessors.
|
org.apache.ignite.ml.preprocessing.encoding.onehotencoder |
Contains one hot encoding preprocessor.
|
org.apache.ignite.ml.preprocessing.encoding.stringencoder |
Contains string encoding preprocessor.
|
org.apache.ignite.ml.preprocessing.imputing |
Contains Imputer preprocessor.
|
org.apache.ignite.ml.preprocessing.maxabsscaling |
Contains Max Abs Scaler preprocessor.
|
org.apache.ignite.ml.preprocessing.minmaxscaling |
Contains Min Max Scaler preprocessor.
|
org.apache.ignite.ml.preprocessing.normalization |
Contains Normalizer preprocessor.
|
org.apache.ignite.ml.preprocessing.standardscaling |
Contains Standard scaler preprocessor.
|
org.apache.ignite.ml.trainers |
Contains model trainers.
|
Modifier and Type | Method and Description |
---|---|
static <K,V,L> IgniteBiFunction<K,V,Vector> |
CompositionUtils.asFeatureExtractor(FeatureLabelExtractor<K,V,L> extractor)
Create feature extractor from given mapping
(key, value) -> LabeledVector . |
static <K,V,L> IgniteBiFunction<K,V,L> |
CompositionUtils.asLabelExtractor(FeatureLabelExtractor<K,V,L> extractor)
Label extractor feature extractor from given mapping
(key, value) -> LabeledVector . |
Modifier and Type | Field and Description |
---|---|
protected IgniteBiFunction<Integer,? super IgniteModel<I,O1>,IgniteFunction<LabeledVector<L>,LabeledVector<L>>> |
TrainersSequentialComposition.datasetMapping
Dataset mapping.
|
Modifier and Type | Method and Description |
---|---|
static <I,O,L> TrainersSequentialComposition<I,O,O,L> |
TrainersSequentialComposition.ofSame(DatasetTrainer<? extends IgniteModel<I,O>,L> tr,
IgniteBiFunction<Integer,? super IgniteModel<I,O>,IgniteFunction<LabeledVector<L>,LabeledVector<L>>> datasetMapping,
IgniteBiPredicate<Integer,IgniteModel<I,O>> shouldStop,
IgniteFunction<O,I> out2In)
Construct sequential composition of same trainers.
|
Constructor and Description |
---|
TrainersSequentialComposition(DatasetTrainer<? extends IgniteModel<I,O1>,L> tr1,
DatasetTrainer<? extends IgniteModel<O1,O2>,L> tr2,
IgniteBiFunction<Integer,? super IgniteModel<I,O1>,IgniteFunction<LabeledVector<L>,LabeledVector<L>>> datasetMapping)
Create sequential composition of two trainers.
|
Modifier and Type | Method and Description |
---|---|
default <D2 extends AutoCloseable> |
PartitionDataBuilder.andThen(IgniteBiFunction<D,C,D2> fun)
Makes a composed partition
data builder that first builds a data and then applies the specified
function on the result. |
default <R> R |
Dataset.compute(IgniteBiFunction<D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce)
Applies the specified
map function to every partition data and LearningEnvironment
in the dataset and then reduces map results to final result by using the reduce function. |
<R> R |
Dataset.compute(IgniteBiFunction<D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and LearningEnvironment
in the dataset and then reduces map results to final result by using the reduce function. |
default <R> R |
Dataset.computeWithCtx(IgniteBiFunction<C,D,R> map,
IgniteBinaryOperator<R> reduce)
Applies the specified
map function to every partition data and context in the dataset
and then reduces map results to final result by using the reduce function. |
default <R> R |
Dataset.computeWithCtx(IgniteBiFunction<C,D,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and context in the dataset
and then reduces map results to final result by using the reduce function. |
Modifier and Type | Class and Description |
---|---|
static class |
ExtractionUtils.ArrayLikeVectorizer<K,V>
Vectorizer extracting vectors from array-like structure with finite size and integer coordinates.
|
static class |
ExtractionUtils.DefaultLabelVectorizer<K,V,C extends Serializable>
Vectorizer with double-label containing on same level as feature values.
|
static class |
ExtractionUtils.IntCoordVectorizer<K,V>
Vectorizer with integer coordinates.
|
static class |
ExtractionUtils.StringCoordVectorizer<K,V>
Vectorizer with String-coordinates.
|
class |
Vectorizer<K,V,C extends Serializable,L>
Class for extracting labeled vectors from upstream.
|
static class |
Vectorizer.VectorizerAdapter<K,V,C extends Serializable,L>
Utility class for convenient overridings.
|
Modifier and Type | Class and Description |
---|---|
class |
BinaryObjectVectorizer<K>
Vectorizer on binary objects.
|
class |
DoubleArrayVectorizer<K>
Vectorizer on arrays of doubles.
|
class |
DummyVectorizer<K>
Vectorizer on Vector.
|
class |
LabeledDummyVectorizer<K,L>
Vectorizer on LabeledVector.
|
Modifier and Type | Method and Description |
---|---|
<R> R |
CacheBasedDataset.compute(IgniteBiFunction<D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and LearningEnvironment
in the dataset and then reduces map results to final result by using the reduce function. |
Modifier and Type | Method and Description |
---|---|
<R> R |
LocalDataset.compute(IgniteBiFunction<D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and LearningEnvironment
in the dataset and then reduces map results to final result by using the reduce function. |
Modifier and Type | Method and Description |
---|---|
<R> R |
DatasetWrapper.compute(IgniteBiFunction<D,LearningEnvironment,R> map,
IgniteBinaryOperator<R> reduce,
R identity)
Applies the specified
map function to every partition data and LearningEnvironment
in the dataset and then reduces map results to final result by using the reduce function. |
Modifier and Type | Interface and Description |
---|---|
interface |
IntIntToDoubleFunction
Getters functions for matrices.
|
Modifier and Type | Field and Description |
---|---|
static IgniteBiFunction<Double,Double,Double> |
Functions.COMPARE
Function that returns {@code a < b ?
|
static IgniteBiFunction<Double,Double,Double> |
Functions.LG
Function that returns
Math.log(a) / Math.log(b) . |
static IgniteBiFunction<Double,Double,Double> |
Functions.MAX_ABS
Function that returns
max(abs(a), abs(b)) . |
static IgniteBiFunction<Double,Double,Double> |
Functions.MIN
Function that returns
min(a, b) . |
static IgniteBiFunction<Double,Double,Double> |
Functions.MIN_ABS
Function that returns
min(abs(a), abs(b)) . |
static IgniteBiFunction<Double,Double,Double> |
Functions.MINUS
Function that returns
a - b . |
static IgniteBiFunction<Double,Double,Double> |
Functions.MINUS_ABS
Function that returns
abs(a - b) . |
static IgniteBiFunction<Double,Double,Double> |
Functions.MINUS_SQUARED
Function that returns
(a - b) * (a - b) |
static IgniteBiFunction<Double,Double,Double> |
Functions.MOD
Function that returns
a % b . |
static IgniteBiFunction<Double,Double,Double> |
Functions.MULT
Function that returns
a * b . |
static IgniteBiFunction<Double,Double,Double> |
Functions.PLUS
Function that returns
a + b . |
static IgniteBiFunction<Double,Double,Double> |
Functions.PLUS_ABS
Function that returns
Math.abs(a) + Math.abs(b) . |
Modifier and Type | Method and Description |
---|---|
default <V> IgniteBiFunction<T,U,V> |
IgniteBiFunction.andThen(IgniteFunction<? super R,? extends V> after) |
static IgniteBiFunction<Double,Double,Double> |
Functions.minusMult(double constant)
Function that returns
a - b*constant . |
static <A,B,C> IgniteBiFunction<A,B,IgniteSupplier<C>> |
Functions.outputSupplier(IgniteBiFunction<A,B,C> f)
Transform function of form (a, b) -> c into (a, b) - () -> c.
|
static IgniteBiFunction<Double,Double,Double> |
Functions.plusMult(double constant)
Function that returns
a + b*constant . |
Modifier and Type | Method and Description |
---|---|
static <A,B,C> IgniteCurriedBiFunction<A,B,C> |
Functions.curry(IgniteBiFunction<A,B,C> f)
Transform bi-function of the form (a, b) -> c into a function of form a -> (b -> c).
|
static <A,B,C> IgniteBiFunction<A,B,IgniteSupplier<C>> |
Functions.outputSupplier(IgniteBiFunction<A,B,C> f)
Transform function of form (a, b) -> c into (a, b) - () -> c.
|
Modifier and Type | Method and Description |
---|---|
<T> T |
AbstractMatrix.foldMap(IgniteBiFunction<T,Double,T> foldFun,
IgniteDoubleFunction<Double> mapFun,
T zeroVal)
Folds this matrix into a single value.
|
<T> T |
Matrix.foldMap(IgniteBiFunction<T,Double,T> foldFun,
IgniteDoubleFunction<Double> mapFun,
T zeroVal)
Folds this matrix into a single value.
|
Matrix |
AbstractMatrix.map(Matrix mtx,
IgniteBiFunction<Double,Double,Double> fun)
Maps all values in this matrix through a given function.
|
Matrix |
Matrix.map(Matrix mtx,
IgniteBiFunction<Double,Double,Double> fun)
Maps all values in this matrix through a given function.
|
Modifier and Type | Method and Description |
---|---|
<T> T |
Vector.foldMap(IgniteBiFunction<T,Double,T> foldFun,
IgniteDoubleFunction<Double> mapFun,
T zeroVal)
Folds this vector into a single value.
|
<T> T |
AbstractVector.foldMap(IgniteBiFunction<T,Double,T> foldFun,
IgniteDoubleFunction<Double> mapFun,
T zeroVal)
Folds this vector into a single value.
|
<T> T |
Vector.foldMap(Vector vec,
IgniteBiFunction<T,Double,T> foldFun,
IgniteBiFunction<Double,Double,Double> combFun,
T zeroVal)
Combines & maps two vector and folds them into a single value.
|
<T> T |
Vector.foldMap(Vector vec,
IgniteBiFunction<T,Double,T> foldFun,
IgniteBiFunction<Double,Double,Double> combFun,
T zeroVal)
Combines & maps two vector and folds them into a single value.
|
<T> T |
AbstractVector.foldMap(Vector vec,
IgniteBiFunction<T,Double,T> foldFun,
IgniteBiFunction<Double,Double,Double> combFun,
T zeroVal)
Combines & maps two vector and folds them into a single value.
|
<T> T |
AbstractVector.foldMap(Vector vec,
IgniteBiFunction<T,Double,T> foldFun,
IgniteBiFunction<Double,Double,Double> combFun,
T zeroVal)
Combines & maps two vector and folds them into a single value.
|
Vector |
Vector.map(IgniteBiFunction<Double,Double,Double> fun,
double y)
Maps all elements of this vector by applying given function to each element with a constant
second parameter
y . |
Vector |
AbstractVector.map(IgniteBiFunction<Double,Double,Double> fun,
double y)
Maps all elements of this vector by applying given function to each element with a constant
second parameter
y . |
Vector |
Vector.map(Vector vec,
IgniteBiFunction<Double,Double,Double> fun)
Maps all values in this vector through a given function.
|
Vector |
AbstractVector.map(Vector vec,
IgniteBiFunction<Double,Double,Double> fun)
Maps all values in this vector through a given function.
|
static Vector |
VectorUtils.zipWith(Vector v1,
Vector v2,
IgniteBiFunction<Double,Double,Double> f)
Zip two vectors with given binary function
(i.e. apply binary function to both vector elementwise and construct vector from results).
|
Modifier and Type | Method and Description |
---|---|
<T> T |
DelegatingVector.foldMap(IgniteBiFunction<T,Double,T> foldFun,
IgniteDoubleFunction<Double> mapFun,
T zeroVal)
Folds this vector into a single value.
|
<T> T |
DelegatingVector.foldMap(Vector vec,
IgniteBiFunction<T,Double,T> foldFun,
IgniteBiFunction<Double,Double,Double> combFun,
T zeroVal)
Combines & maps two vector and folds them into a single value.
|
<T> T |
DelegatingVector.foldMap(Vector vec,
IgniteBiFunction<T,Double,T> foldFun,
IgniteBiFunction<Double,Double,Double> combFun,
T zeroVal)
Combines & maps two vector and folds them into a single value.
|
Vector |
DelegatingVector.map(IgniteBiFunction<Double,Double,Double> fun,
double y)
Maps all elements of this vector by applying given function to each element with a constant
second parameter
y . |
Vector |
DelegatingVector.map(Vector vec,
IgniteBiFunction<Double,Double,Double> fun)
Maps all values in this vector through a given function.
|
Modifier and Type | Method and Description |
---|---|
static Vector |
MatrixUtil.zipFoldByColumns(Matrix mtx1,
Matrix mtx2,
IgniteBiFunction<Vector,Vector,Double> fun)
Zips two matrices by column-by-column with specified function.
|
static Vector |
MatrixUtil.zipFoldByRows(Matrix mtx1,
Matrix mtx2,
IgniteBiFunction<Vector,Vector,Double> fun)
Zips two matrices by row-by-row with specified function.
|
Modifier and Type | Interface and Description |
---|---|
interface |
Preprocessor<K,V>
Basic interface in Preprocessor Hierarchy.
|
Modifier and Type | Class and Description |
---|---|
class |
BinarizationPreprocessor<K,V>
Preprocessing function that makes binarization.
|
Modifier and Type | Class and Description |
---|---|
class |
MappedPreprocessor<K,V,L0,L1>
Mapped Preprocessor.
|
class |
PatchedPreprocessor<K,V,L1,L2>
Preprocessing function that makes binarization.
|
Modifier and Type | Class and Description |
---|---|
class |
EncoderPreprocessor<K,V>
Preprocessing function that makes encoding.
|
Modifier and Type | Class and Description |
---|---|
class |
OneHotEncoderPreprocessor<K,V>
Preprocessing function that makes one-hot encoding.
|
Modifier and Type | Class and Description |
---|---|
class |
StringEncoderPreprocessor<K,V>
Preprocessing function that makes String encoding.
|
Modifier and Type | Class and Description |
---|---|
class |
ImputerPreprocessor<K,V>
Preprocessing function that makes imputing.
|
Modifier and Type | Class and Description |
---|---|
class |
MaxAbsScalerPreprocessor<K,V>
The preprocessing function that makes maxabsscaling, transforms features to the scale
[-1,+1] . |
Modifier and Type | Class and Description |
---|---|
class |
MinMaxScalerPreprocessor<K,V>
Preprocessing function that makes minmaxscaling.
|
Modifier and Type | Class and Description |
---|---|
class |
NormalizationPreprocessor<K,V>
Preprocessing function that makes normalization.
|
Modifier and Type | Class and Description |
---|---|
class |
StandardScalerPreprocessor<K,V>
The preprocessing function that makes standard scaling, transforms features to make
mean equal to 0
and variance equal to 1 . |
Modifier and Type | Interface and Description |
---|---|
interface |
FeatureLabelExtractor<K,V,L>
Class fro extracting features and vectors from upstream.
|
GridGain In-Memory Computing Platform : ver. 8.9.14 Release Date : November 5 2024