public class Blas extends Object
Constructor and Description |
---|
Blas() |
Modifier and Type | Method and Description |
---|---|
static void |
axpy(Double a,
Vector x,
Vector y)
Performs y += a * x
|
static void |
checkCardinality(Matrix a,
Vector v)
Checks if Matrix A can be multiplied by vector v, if not CardinalityException is thrown.
|
void |
copy(Vector x,
Vector y)
Copies Vector x into Vector y.
|
static Double |
dot(Vector x,
Vector y)
Returns dot product of vectors x and y.
|
static void |
gemm(double alpha,
Matrix a,
Matrix b,
double beta,
Matrix c)
For the moment we have no flags indicating if matrix is transposed or not.
|
static void |
gemv(double alpha,
Matrix a,
Vector x,
double beta,
Vector y)
y := alpha * A * x + beta * y.
|
static void |
scal(Double a,
Vector x)
Performs in-place multiplication of vector x by a real scalar a.
|
static void |
spr(Double alpha,
DenseVector v,
DenseVector u)
Adds alpha * v * v.t to a matrix in-place.
|
static void |
spr(Double alpha,
SparseVector v,
DenseVector u) |
static void |
syr(Double alpha,
SparseVector x,
DenseMatrix a) |
public static void axpy(Double a, Vector x, Vector y)
a
- Scalar a.x
- Vector x.y
- Vector y.public static Double dot(Vector x, Vector y)
x
- Vector x.y
- Vector y.public void copy(Vector x, Vector y)
x
- Vector x.y
- Vector y.public static void scal(Double a, Vector x)
a
- Scalar a.x
- Vector x.public static void spr(Double alpha, DenseVector v, DenseVector u)
u
- the upper triangular part of the matrix in a [[DenseVector]](column major)public static void spr(Double alpha, SparseVector v, DenseVector u)
public static void syr(Double alpha, SparseVector x, DenseMatrix a)
public static void gemm(double alpha, Matrix a, Matrix b, double beta, Matrix c)
public static void gemv(double alpha, Matrix a, Vector x, double beta, Vector y)
alpha
- Alpha.a
- Matrix a.x
- Vector x.beta
- Beta.y
- Vector y.public static void checkCardinality(Matrix a, Vector v) throws CardinalityException
a
- Matrix A.v
- Vector v.CardinalityException
GridGain In-Memory Computing Platform : ver. 8.9.14 Release Date : November 5 2024