Package | Description |
---|---|
org.apache.ignite.ml |
Root ML package.
|
org.apache.ignite.ml.clustering.gmm |
Contains Gauss Mixture Model clustering algorithm (see
GmmModel ). |
org.apache.ignite.ml.clustering.kmeans |
Contains kMeans clustering algorithm.
|
org.apache.ignite.ml.composition |
Contains classes for ensemble of models implementation.
|
org.apache.ignite.ml.composition.bagging |
Contains bootstrap aggregation (bagging) trainer allowing to combine some other trainers and
return a bagged version of them.
|
org.apache.ignite.ml.composition.boosting |
Contains Gradient Boosting regression and classification abstract classes
allowing regressor type selecting in child classes.
|
org.apache.ignite.ml.composition.combinators.parallel |
Contains parallel combinators of trainers and models.
|
org.apache.ignite.ml.composition.combinators.sequential |
Contains sequential combinators of trainers and models.
|
org.apache.ignite.ml.composition.stacking |
Contains classes used for training with stacking technique.
|
org.apache.ignite.ml.inference |
Root package for model inference functionality.
|
org.apache.ignite.ml.inference.builder |
Root package for model inference builders.
|
org.apache.ignite.ml.inference.parser |
Root package for model inference parsers.
|
org.apache.ignite.ml.knn |
Contains main APIs for kNN algorithms.
|
org.apache.ignite.ml.knn.ann |
Contains main APIs for ANN classification algorithms.
|
org.apache.ignite.ml.knn.classification |
Contains main APIs for kNN classification algorithms.
|
org.apache.ignite.ml.knn.regression |
Contains helper classes for kNN regression algorithms.
|
org.apache.ignite.ml.mleap |
Base package for Mleap model parser.
|
org.apache.ignite.ml.multiclass |
Contains various multi-classifier models and trainers.
|
org.apache.ignite.ml.naivebayes.discrete |
Contains Bernoulli naive Bayes classifier.
|
org.apache.ignite.ml.naivebayes.gaussian |
Contains Gaussian naive Bayes classifier.
|
org.apache.ignite.ml.nn |
Contains neural networks and related classes.
|
org.apache.ignite.ml.optimization |
Contains implementations of optimization algorithms and related classes.
|
org.apache.ignite.ml.pipeline |
Contains Pipeline API.
|
org.apache.ignite.ml.recommendation |
Contains recommendation system framework.
|
org.apache.ignite.ml.regressions.linear |
Contains various linear regressions.
|
org.apache.ignite.ml.regressions.logistic |
Contains various logistic regressions.
|
org.apache.ignite.ml.sparkmodelparser |
Base package for Spark model parser.
|
org.apache.ignite.ml.svm |
Contains main APIs for SVM(support vector machines) algorithms.
|
org.apache.ignite.ml.trainers |
Contains model trainers.
|
org.apache.ignite.ml.tree |
Root package for decision trees.
|
org.apache.ignite.ml.tree.randomforest.data |
Package contains helper data structures for random forest implementation.
|
org.apache.ignite.ml.xgboost |
Base package for XGBoost model parser, correspondent DTOs and util classes.
|
Modifier and Type | Interface and Description |
---|---|
interface |
IgniteModel<T,V>
Basic interface for all models.
|
Modifier and Type | Class and Description |
---|---|
class |
GmmModel
Gaussian Mixture Model.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ClusterizationModel<P,V>
Base interface for all clusterization models.
|
Modifier and Type | Class and Description |
---|---|
class |
KMeansModel
This class encapsulates result of clusterization by KMeans algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
ModelOnFeaturesSubspace
Model trained on a features subspace with mapping from original features space to subspace.
|
class |
ModelsComposition
Model consisting of several models and prediction aggregation strategy.
|
Modifier and Type | Class and Description |
---|---|
class |
BaggedModel
This class represents model produced by
BaggedTrainer . |
Modifier and Type | Class and Description |
---|---|
static class |
GDBTrainer.GDBModel
GDB model.
|
Modifier and Type | Class and Description |
---|---|
class |
ModelsParallelComposition<I,O>
Parallel composition of models.
|
Modifier and Type | Class and Description |
---|---|
class |
ModelsSequentialComposition<I,O1,O2>
Sequential composition of models.
|
Modifier and Type | Class and Description |
---|---|
class |
StackedModel<IS,IA,O,AM extends IgniteModel<IA,O>>
This is a wrapper for model produced by
StackedDatasetTrainer . |
Modifier and Type | Method and Description |
---|---|
static Model<Vector,Future<Double>> |
IgniteModelStorageUtil.getAsyncModel(Ignite ignite,
String name,
AsyncModelBuilder mdlBldr)
Retrieves Ignite model by name using asynchronous model builder.
|
static <I extends Serializable,O extends Serializable> |
IgniteModelStorageUtil.getModel(Ignite ignite,
String name)
Retrieves Ignite model by name using
SingleModelBuilder . |
static <I extends Serializable,O extends Serializable> |
IgniteModelStorageUtil.getSyncModel(Ignite ignite,
String name,
SyncModelBuilder mdlBldr)
Retrieves Ignite model by name using synchronous model builder.
|
Modifier and Type | Method and Description |
---|---|
<I extends Serializable,O extends Serializable,M extends Model<I,O>> |
SingleModelBuilder.build(ModelReader reader,
ModelParser<I,O,M> parser)
Builds synchronous inference model using specified model reader and model parser.
|
<I extends Serializable,O extends Serializable,M extends Model<I,O>> |
SyncModelBuilder.build(ModelReader reader,
ModelParser<I,O,M> parser)
Builds synchronous inference model using specified model reader and model parser.
|
Modifier and Type | Method and Description |
---|---|
<I extends Serializable,O extends Serializable> |
AsyncModelBuilder.build(ModelReader reader,
ModelParser<I,O,?> parser)
Builds asynchronous inference model using specified model reader and model parser.
|
<I extends Serializable,O extends Serializable> |
IgniteDistributedModelBuilder.build(ModelReader reader,
ModelParser<I,O,?> parser)
Starts the specified in constructor number of service instances and request/response queues.
|
<I extends Serializable,O extends Serializable> |
ThreadedModelBuilder.build(ModelReader reader,
ModelParser<I,O,?> parser)
Builds asynchronous inference model using specified model reader and model parser.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ModelParser<I,O,M extends Model<I,O>>
Model parser that accepts a serialized model represented by byte array, parses it and returns
Model . |
Modifier and Type | Method and Description |
---|---|
Model<I,O> |
TensorFlowBaseModelParser.parse(byte[] mdl)
Accepts serialized model represented by byte array, parses it and returns
Model . |
Modifier and Type | Class and Description |
---|---|
class |
KNNModel<L>
KNN model build on top of distribtued spatial indices.
|
class |
NNClassificationModel
Common methods and fields for all kNN and aNN models
to predict label based on neighbours' labels.
|
Modifier and Type | Class and Description |
---|---|
class |
ANNClassificationModel
ANN model to predict labels in multi-class classification task.
|
Modifier and Type | Class and Description |
---|---|
class |
KNNClassificationModel
KNN classification model.
|
Modifier and Type | Class and Description |
---|---|
class |
KNNRegressionModel
KNN regression model.
|
Modifier and Type | Class and Description |
---|---|
class |
MLeapModel
MLeap model imported and wrapped to be compatible with Apache Ignite infrastructure.
|
Modifier and Type | Class and Description |
---|---|
class |
MultiClassModel<M extends IgniteModel<Vector,Double>>
Base class for multi-classification model for set of classifiers.
|
Modifier and Type | Class and Description |
---|---|
class |
DiscreteNaiveBayesModel
Discrete naive Bayes model which predicts result value
y belongs to a class C_k, k in [0..K] as
{@code p(C_k,y) =x_1*p_k1^x *... |
Modifier and Type | Class and Description |
---|---|
class |
GaussianNaiveBayesModel
Simple naive Bayes model which predicts result value
y belongs to a class C_k, k in [0..K] as {@code
p(C_k,y) = p(C_k)*p(y_1,C_k) *... |
Modifier and Type | Class and Description |
---|---|
class |
MultilayerPerceptron
Class encapsulating logic of multilayer perceptron.
|
Modifier and Type | Interface and Description |
---|---|
interface |
SmoothParametrized<M extends Parametrized<M>>
Interface for models which are smooth functions of their parameters.
|
Modifier and Type | Class and Description |
---|---|
class |
PipelineMdl<K,V>
Wraps the model produced by
Pipeline . |
Modifier and Type | Class and Description |
---|---|
class |
RecommendationModel<O extends Serializable,S extends Serializable>
Recommendation model that predicts rating for
ObjectSubjectPair . |
Modifier and Type | Class and Description |
---|---|
class |
LinearRegressionModel
Simple linear regression model which predicts result value Y as a linear combination of input variables:
Y = weights * X + intercept.
|
Modifier and Type | Class and Description |
---|---|
class |
LogisticRegressionModel
Logistic regression (logit model) is a generalized linear model used for binomial regression.
|
Modifier and Type | Method and Description |
---|---|
static Model |
SparkModelParser.parse(String pathToMdl,
SupportedSparkModels parsedSparkMdl)
Load model from parquet (presented as a directory).
|
Modifier and Type | Class and Description |
---|---|
class |
SVMLinearClassificationModel
Base class for SVM linear classification model.
|
Modifier and Type | Class and Description |
---|---|
class |
AdaptableDatasetModel<I,O,IW,OW,M extends IgniteModel<IW,OW>>
Model which is composition of form
before `andThen` inner Mdl `andThen` after . |
Modifier and Type | Interface and Description |
---|---|
interface |
DecisionTreeNode
Base interface for decision tree nodes.
|
Modifier and Type | Class and Description |
---|---|
class |
DecisionTreeConditionalNode
Decision tree conditional (non-leaf) node.
|
class |
DecisionTreeLeafNode
Decision tree leaf node which contains value.
|
Modifier and Type | Class and Description |
---|---|
class |
TreeNode
Decision tree node class.
|
class |
TreeRoot
Tree root class.
|
Modifier and Type | Class and Description |
---|---|
class |
XGModelComposition
XGBoost model composition.
|
GridGain In-Memory Computing Platform : ver. 8.9.14 Release Date : November 5 2024