Package | Description |
---|---|
org.apache.ignite.ml.composition.stacking |
Contains classes used for training with stacking technique.
|
Modifier and Type | Method and Description |
---|---|
<M1 extends IgniteModel<Matrix,Matrix>> |
StackedVectorDatasetTrainer.addMatrix2MatrixTrainer(DatasetTrainer<M1,L> trainer)
|
<M1 extends IgniteModel<Vector,Vector>> |
StackedVectorDatasetTrainer.addTrainer(DatasetTrainer<M1,L> trainer)
Adds submodel trainer along with converters needed on training and inference stages.
|
<M1 extends IgniteModel<Vector,Double>> |
StackedVectorDatasetTrainer.addTrainerWithDoubleOutput(DatasetTrainer<M1,L> trainer)
Shortcut for adding trainer
Vector -> Double where this trainer is treated as Vector -> Vector , where
output Vector is constructed by wrapping double value. |
StackedVectorDatasetTrainer<O,AM,L> |
StackedVectorDatasetTrainer.withAggregatorInputMerger(IgniteBinaryOperator<Vector> merger)
Specify binary operator used to merge submodels outputs to one.
|
StackedVectorDatasetTrainer<O,AM,L> |
StackedVectorDatasetTrainer.withAggregatorTrainer(DatasetTrainer<AM,L> aggregatorTrainer)
Specify aggregator trainer.
|
<L1> StackedVectorDatasetTrainer<O,AM,L1> |
StackedVectorDatasetTrainer.withConvertedLabels(IgniteFunction<L1,L> new2Old)
Creates
DatasetTrainer with same training logic, but able to accept labels of given new type of labels. |
StackedVectorDatasetTrainer<O,AM,L> |
StackedVectorDatasetTrainer.withEnvironmentBuilder(LearningEnvironmentBuilder envBuilder)
Changes learning Environment.
|
StackedVectorDatasetTrainer<O,AM,L> |
StackedVectorDatasetTrainer.withOriginalFeaturesDropped()
Drop original features during training and inference.
|
StackedVectorDatasetTrainer<O,AM,L> |
StackedVectorDatasetTrainer.withOriginalFeaturesKept()
Keep original features using
IgniteFunction.identity() as submodelInput2AggregatingInputConverter. |
StackedVectorDatasetTrainer<O,AM,L> |
StackedVectorDatasetTrainer.withOriginalFeaturesKept(IgniteFunction<Vector,Vector> submodelInput2AggregatingInputConverter)
Keep original features during training and propagate submodels input to aggregator during inference
using given function.
|
StackedVectorDatasetTrainer<O,AM,L> |
StackedVectorDatasetTrainer.withSubmodelOutput2VectorConverter(IgniteFunction<Vector,Vector> submodelOutput2VectorConverter)
Set function used for conversion of submodel output to
Vector . |
StackedVectorDatasetTrainer<O,AM,L> |
StackedVectorDatasetTrainer.withVector2SubmodelInputConverter(IgniteFunction<Vector,Vector> vector2SubmodelInputConverter)
Set function used for conversion of
Vector to submodel input. |
GridGain In-Memory Computing Platform : ver. 8.9.14 Release Date : November 5 2024