Package | Description |
---|---|
org.apache.ignite.ml.composition.stacking |
Contains classes used for training with stacking technique.
|
Modifier and Type | Class and Description |
---|---|
class |
SimpleStackedDatasetTrainer<I,O,AM extends IgniteModel<I,O>,L>
DatasetTrainer with same type of input and output of submodels. |
class |
StackedVectorDatasetTrainer<O,AM extends IgniteModel<Vector,O>,L>
StackedDatasetTrainer with Vector as submodels input and output. |
Modifier and Type | Method and Description |
---|---|
<M1 extends IgniteModel<IS,IA>> |
StackedDatasetTrainer.addTrainer(DatasetTrainer<M1,L> trainer)
Adds submodel trainer along with converters needed on training and inference stages.
|
StackedDatasetTrainer<IS,IA,O,AM,L> |
StackedDatasetTrainer.withAggregatorInputMerger(IgniteBinaryOperator<IA> merger)
Specify binary operator used to merge submodels outputs to one.
|
StackedDatasetTrainer<IS,IA,O,AM,L> |
StackedDatasetTrainer.withAggregatorTrainer(DatasetTrainer<AM,L> aggregatorTrainer)
Specify aggregator trainer.
|
StackedDatasetTrainer<IS,IA,O,AM,L> |
StackedDatasetTrainer.withEnvironmentBuilder(LearningEnvironmentBuilder envBuilder)
Changes learning Environment.
|
StackedDatasetTrainer<IS,IA,O,AM,L> |
StackedDatasetTrainer.withOriginalFeaturesDropped()
Drop original features during training and inference.
|
StackedDatasetTrainer<IS,IA,O,AM,L> |
StackedDatasetTrainer.withOriginalFeaturesKept(IgniteFunction<IS,IA> submodelInput2AggregatingInputConverter)
Keep original features during training and propagate submodels input to aggregator during inference
using given function.
|
StackedDatasetTrainer<IS,IA,O,AM,L> |
StackedDatasetTrainer.withSubmodelOutput2VectorConverter(IgniteFunction<IA,Vector> submodelOutput2VectorConverter)
Set function used for conversion of submodel output to
Vector . |
StackedDatasetTrainer<IS,IA,O,AM,L> |
StackedDatasetTrainer.withVector2SubmodelInputConverter(IgniteFunction<Vector,IS> vector2SubmodelInputConverter)
Set function used for conversion of
Vector to submodel input. |
GridGain In-Memory Computing Platform : ver. 8.9.15 Release Date : December 3 2024