Package | Description |
---|---|
org.apache.ignite.ml.composition.stacking |
Contains classes used for training with stacking technique.
|
Modifier and Type | Class and Description |
---|---|
class |
StackedVectorDatasetTrainer<O,AM extends IgniteModel<Vector,O>,L>
StackedDatasetTrainer with Vector as submodels input and output. |
Modifier and Type | Method and Description |
---|---|
<M1 extends IgniteModel<I,I>> |
SimpleStackedDatasetTrainer.addTrainer(DatasetTrainer<M1,L> trainer)
Adds submodel trainer along with converters needed on training and inference stages.
|
SimpleStackedDatasetTrainer<I,O,AM,L> |
SimpleStackedDatasetTrainer.withAggregatorInputMerger(IgniteBinaryOperator<I> merger)
Specify binary operator used to merge submodels outputs to one.
|
SimpleStackedDatasetTrainer<I,O,AM,L> |
SimpleStackedDatasetTrainer.withAggregatorTrainer(DatasetTrainer<AM,L> aggregatorTrainer)
Specify aggregator trainer.
|
<L1> SimpleStackedDatasetTrainer<I,O,AM,L1> |
SimpleStackedDatasetTrainer.withConvertedLabels(IgniteFunction<L1,L> new2Old)
Creates
DatasetTrainer with same training logic, but able to accept labels of given new type of labels. |
SimpleStackedDatasetTrainer<I,O,AM,L> |
SimpleStackedDatasetTrainer.withEnvironmentBuilder(LearningEnvironmentBuilder envBuilder)
Changes learning Environment.
|
SimpleStackedDatasetTrainer<I,O,AM,L> |
SimpleStackedDatasetTrainer.withOriginalFeaturesDropped()
Drop original features during training and inference.
|
SimpleStackedDatasetTrainer<I,O,AM,L> |
SimpleStackedDatasetTrainer.withOriginalFeaturesKept()
Keep original features using
IgniteFunction.identity() as submodelInput2AggregatingInputConverter. |
SimpleStackedDatasetTrainer<I,O,AM,L> |
SimpleStackedDatasetTrainer.withOriginalFeaturesKept(IgniteFunction<I,I> submodelInput2AggregatingInputConverter)
Keep original features during training and propagate submodels input to aggregator during inference
using given function.
|
GridGain In-Memory Computing Platform : ver. 8.9.14 Release Date : November 5 2024