Package | Description |
---|---|
org.apache.ignite |
Contains entry-point Ignite & HPC APIs.
|
org.apache.ignite.cache.affinity.rendezvous |
Contains HRW-based cache affinity for partitioned cache.
|
org.apache.ignite.cache.hibernate |
Contains implementation of Hibernate L2 cache.
|
org.apache.ignite.cache.query |
Contains APIs for creating and executing cache queries.
|
org.apache.ignite.compute.gridify |
Contains APIs utilized for AOP-based grid-enabling.
|
org.apache.ignite.events |
Contains Event Subscription functionality together with various events emitted by Ignite.
|
org.apache.ignite.lang |
Contains general language constructs and functional APIs for distributed computations.
|
org.apache.ignite.messaging |
Contains Topic-based Messaging functionality.
|
org.apache.ignite.ml.composition.combinators.sequential |
Contains sequential combinators of trainers and models.
|
org.apache.ignite.ml.dataset |
Base package for machine learning dataset classes.
|
org.apache.ignite.ml.dataset.impl.cache |
Base package for cache based implementation of machine learning dataset.
|
org.apache.ignite.ml.dataset.impl.cache.util |
Contains util classes used in cache based implementation of dataset.
|
org.apache.ignite.ml.dataset.impl.local |
Base package for local implementation of machine learning dataset.
|
org.apache.ignite.ml.selection.cv |
Root package for cross-validation algorithms.
|
org.apache.ignite.ml.selection.scoring.cursor |
Util classes used for score calculation.
|
org.apache.ignite.ml.selection.scoring.evaluator |
Package for model evaluator classes.
|
org.apache.ignite.ml.selection.split |
Root package for dataset splitters and cross validation.
|
org.apache.ignite.ml.sql |
Contains util classes that help to work with machine learning models in SQL and train models on data from SQL tables.
|
org.apache.ignite.ml.trainers |
Contains model trainers.
|
org.apache.ignite.ml.util.generators |
Contains utility classes for data streams generation.
|
org.apache.ignite.spi |
Contains common classes and interfaces for SPI implementations.
|
org.apache.ignite.tensorflow.cluster |
TensorFlow integration API that allows to start and maintain TensorFlow cluster using infrastructure tools from
package
org.apache.ignite.tensorflow.core . |
Modifier and Type | Method and Description |
---|---|
void |
IgniteCache.loadCache(IgniteBiPredicate<K,V> p,
Object... args)
Executes
IgniteCache.localLoadCache(IgniteBiPredicate, Object...) on all cache nodes. |
IgniteFuture<Void> |
IgniteCache.loadCacheAsync(IgniteBiPredicate<K,V> p,
Object... args)
Asynchronously executes
IgniteCache.localLoadCache(IgniteBiPredicate, Object...) on all cache nodes. |
void |
IgniteMessaging.localListen(Object topic,
IgniteBiPredicate<UUID,?> p)
Adds local listener for given topic on local node only.
|
void |
IgniteCache.localLoadCache(IgniteBiPredicate<K,V> p,
Object... args)
Delegates to
CacheStore.loadCache(IgniteBiInClosure,Object...) method
to load state from the underlying persistent storage. |
IgniteFuture<Void> |
IgniteCache.localLoadCacheAsync(IgniteBiPredicate<K,V> p,
Object... args)
Asynchronously loads state from the underlying persistent storage by delegating
to
CacheStore.loadCache(IgniteBiInClosure,Object...) method. |
<T extends Event> |
IgniteEvents.remoteListen(IgniteBiPredicate<UUID,T> locLsnr,
IgnitePredicate<T> rmtFilter,
int... types)
Adds event listener for specified events to all nodes in the cluster group (possibly including
local node if it belongs to the cluster group as well).
|
<T extends Event> |
IgniteEvents.remoteListen(int bufSize,
long interval,
boolean autoUnsubscribe,
IgniteBiPredicate<UUID,T> locLsnr,
IgnitePredicate<T> rmtFilter,
int... types)
Adds event listener for specified events to all nodes in the cluster group (possibly including
local node if it belongs to the cluster group as well).
|
UUID |
IgniteMessaging.remoteListen(Object topic,
IgniteBiPredicate<UUID,?> p)
Adds a message listener for a given topic to all nodes in the cluster group (possibly including
this node if it belongs to the cluster group as well).
|
<T extends Event> |
IgniteEvents.remoteListenAsync(IgniteBiPredicate<UUID,T> locLsnr,
IgnitePredicate<T> rmtFilter,
int... types)
Asynchronously adds event listener for specified events to all nodes in the cluster group (possibly including
local node if it belongs to the cluster group as well).
|
<T extends Event> |
IgniteEvents.remoteListenAsync(int bufSize,
long interval,
boolean autoUnsubscribe,
IgniteBiPredicate<UUID,T> locLsnr,
IgnitePredicate<T> rmtFilter,
int... types)
Asynchronously adds event listener for specified events to all nodes in the cluster group (possibly including
local node if it belongs to the cluster group as well).
|
IgniteFuture<UUID> |
IgniteMessaging.remoteListenAsync(Object topic,
IgniteBiPredicate<UUID,?> p)
Asynchronously adds a message listener for a given topic to all nodes in the cluster group (possibly including
this node if it belongs to the cluster group as well).
|
void |
IgniteMessaging.stopLocalListen(Object topic,
IgniteBiPredicate<UUID,?> p)
Unregisters local listener for given topic on local node only.
|
Modifier and Type | Class and Description |
---|---|
class |
ClusterNodeAttributeAffinityBackupFilter
Attribute-based affinity backup filter that forces each partition's primary and backup nodes to different hardware
which is not expected to fail simultaneously, e.g., in AWS, to different "availability zones".
|
Modifier and Type | Method and Description |
---|---|
IgniteBiPredicate<ClusterNode,List<ClusterNode>> |
RendezvousAffinityFunction.getAffinityBackupFilter()
Gets optional backup filter.
|
IgniteBiPredicate<ClusterNode,ClusterNode> |
RendezvousAffinityFunction.getBackupFilter()
Gets optional backup filter.
|
Modifier and Type | Method and Description |
---|---|
RendezvousAffinityFunction |
RendezvousAffinityFunction.setAffinityBackupFilter(IgniteBiPredicate<ClusterNode,List<ClusterNode>> affinityBackupFilter)
Sets optional backup filter.
|
RendezvousAffinityFunction |
RendezvousAffinityFunction.setBackupFilter(IgniteBiPredicate<ClusterNode,ClusterNode> backupFilter)
Deprecated.
Use
affinityBackupFilter instead. |
Constructor and Description |
---|
RendezvousAffinityFunction(int parts,
IgniteBiPredicate<ClusterNode,ClusterNode> backupFilter)
Initializes optional counts for replicas and backups.
|
Modifier and Type | Method and Description |
---|---|
void |
HibernateCacheProxy.localLoadCache(@Nullable IgniteBiPredicate p,
Object... args)
Delegates to
CacheStore.loadCache(IgniteBiInClosure, Object...) method
to load state from the underlying persistent storage. |
org.apache.ignite.internal.IgniteInternalFuture<?> |
HibernateCacheProxy.localLoadCacheAsync(@Nullable IgniteBiPredicate p,
Object... args)
Asynchronously delegates to
CacheStore.loadCache(IgniteBiInClosure, Object...) method
to reload state from the underlying persistent storage. |
Iterator<javax.cache.Cache.Entry<Object,Object>> |
HibernateCacheProxy.scanIterator(boolean keepBinary,
@Nullable IgniteBiPredicate p) |
Iterator<javax.cache.Cache.Entry<Object,Object>> |
HibernateCacheProxy.scanIterator(boolean keepBinary,
@Nullable IgniteBiPredicate p,
long timeout) |
Modifier and Type | Method and Description |
---|---|
IgniteBiPredicate<K,V> |
IndexQuery.getFilter()
Gets remote cache entries filter.
|
IgniteBiPredicate<K,V> |
ScanQuery.getFilter()
Gets filter.
|
Modifier and Type | Method and Description |
---|---|
IndexQuery<K,V> |
IndexQuery.setFilter(IgniteBiPredicate<K,V> filter)
Sets remote cache entries filter.
|
ScanQuery<K,V> |
ScanQuery.setFilter(@Nullable IgniteBiPredicate<K,V> filter)
Sets filter.
|
Constructor and Description |
---|
ScanQuery(@Nullable IgniteBiPredicate<K,V> filter)
Create scan query with filter.
|
ScanQuery(@Nullable Integer part,
@Nullable IgniteBiPredicate<K,V> filter)
Create scan query with filter.
|
Modifier and Type | Interface and Description |
---|---|
interface |
GridifyNodeFilter
Predicate node filter.
|
Modifier and Type | Method and Description |
---|---|
@Nullable IgniteBiPredicate<K,V> |
CacheQueryExecutedEvent.scanQueryFilter()
Gets scan query filter.
|
@Nullable IgniteBiPredicate<K,V> |
CacheQueryReadEvent.scanQueryFilter()
Gets scan query filter.
|
Constructor and Description |
---|
CacheQueryExecutedEvent(ClusterNode node,
String msg,
int type,
String qryType,
@Nullable String cacheName,
@Nullable String clsName,
@Nullable String clause,
@Nullable IgniteBiPredicate<K,V> scanQryFilter,
@Nullable CacheEntryEventSerializableFilter<K,V> contQryFilter,
@Nullable Object[] args,
@Nullable UUID subjId,
@Nullable String taskName) |
CacheQueryReadEvent(ClusterNode node,
String msg,
int type,
String qryType,
@Nullable String cacheName,
@Nullable String clsName,
@Nullable String clause,
@Nullable IgniteBiPredicate<K,V> scanQryFilter,
@Nullable CacheEntryEventSerializableFilter<K,V> contQryFilter,
@Nullable Object[] args,
@Nullable UUID subjId,
@Nullable String taskName,
K key,
V val,
V oldVal,
@Nullable Object row) |
Modifier and Type | Method and Description |
---|---|
default IgniteBiPredicate<E1,E2> |
IgniteBiPredicate.and(IgniteBiPredicate<E1,E2> then)
Returns a composed predicate that represents a short-circuiting logical
AND of this predicate and another.
|
Modifier and Type | Method and Description |
---|---|
default IgniteBiPredicate<E1,E2> |
IgniteBiPredicate.and(IgniteBiPredicate<E1,E2> then)
Returns a composed predicate that represents a short-circuiting logical
AND of this predicate and another.
|
Modifier and Type | Class and Description |
---|---|
class |
MessagingListenActor<T>
Convenience actor-base adapter for
IgniteMessaging.localListen(Object, IgniteBiPredicate)
method. |
Modifier and Type | Method and Description |
---|---|
static <I,O,L> TrainersSequentialComposition<I,O,O,L> |
TrainersSequentialComposition.ofSame(DatasetTrainer<? extends IgniteModel<I,O>,L> tr,
IgniteBiFunction<Integer,? super IgniteModel<I,O>,IgniteFunction<LabeledVector<L>,LabeledVector<L>>> datasetMapping,
IgniteBiPredicate<Integer,IgniteModel<I,O>> shouldStop,
IgniteFunction<O,I> out2In)
Construct sequential composition of same trainers.
|
Modifier and Type | Method and Description |
---|---|
DatasetBuilder<K,V> |
DatasetBuilder.withFilter(IgniteBiPredicate<K,V> filterToAdd)
Returns new instance of DatasetBuilder using conjunction of internal filter and
filterToAdd . |
Modifier and Type | Method and Description |
---|---|
DatasetBuilder<K,V> |
CacheBasedDatasetBuilder.withFilter(IgniteBiPredicate<K,V> filterToAdd)
Returns new instance of DatasetBuilder using conjunction of internal filter and
filterToAdd . |
Constructor and Description |
---|
CacheBasedDataset(Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
UpstreamTransformerBuilder upstreamTransformerBuilder,
IgniteCache<Integer,C> datasetCache,
LearningEnvironmentBuilder envBuilder,
PartitionDataBuilder<K,V,C,D> partDataBuilder,
UUID datasetId,
boolean upstreamKeepBinary,
LearningEnvironment localLearningEnv,
int retriesCnt)
Constructs a new instance of dataset based on Ignite Cache, which is used as
upstream and as reliable storage for
partition context as well. |
CacheBasedDatasetBuilder(Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter)
Constructs a new instance of cache based dataset builder that makes
CacheBasedDataset . |
CacheBasedDatasetBuilder(Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
UpstreamTransformerBuilder transformerBuilder)
Constructs a new instance of cache based dataset builder that makes
CacheBasedDataset . |
CacheBasedDatasetBuilder(Ignite ignite,
IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
UpstreamTransformerBuilder transformerBuilder,
Boolean isKeepBinary,
int retries)
Constructs a new instance of cache based dataset builder that makes
CacheBasedDataset . |
Modifier and Type | Method and Description |
---|---|
static <K,V,C extends Serializable,D extends AutoCloseable> |
ComputeUtils.getData(Ignite ignite,
String upstreamCacheName,
IgniteBiPredicate<K,V> filter,
UpstreamTransformerBuilder transformerBuilder,
String datasetCacheName,
UUID datasetId,
PartitionDataBuilder<K,V,C,D> partDataBuilder,
LearningEnvironment env,
boolean isKeepBinary)
Extracts partition
data from the local storage, if it's not found in local storage recovers this data from a partition upstream and context . |
static <K,V,C extends Serializable> |
ComputeUtils.initContext(Ignite ignite,
String upstreamCacheName,
UpstreamTransformerBuilder transformerBuilder,
IgniteBiPredicate<K,V> filter,
String datasetCacheName,
PartitionContextBuilder<K,V,C> ctxBuilder,
LearningEnvironmentBuilder envBuilder,
int retries,
int interval,
boolean isKeepBinary,
DeployingContext deployingContext)
Initializes partition
context by loading it from a partition upstream . |
Modifier and Type | Method and Description |
---|---|
DatasetBuilder<K,V> |
LocalDatasetBuilder.withFilter(IgniteBiPredicate<K,V> filterToAdd)
Returns new instance of DatasetBuilder using conjunction of internal filter and
filterToAdd . |
Constructor and Description |
---|
LocalDatasetBuilder(Map<K,V> upstreamMap,
IgniteBiPredicate<K,V> filter,
int partitions)
Constructs a new instance of local dataset builder that makes
LocalDataset . |
LocalDatasetBuilder(Map<K,V> upstreamMap,
IgniteBiPredicate<K,V> filter,
int partitions,
UpstreamTransformerBuilder upstreamTransformerBuilder)
Constructs a new instance of local dataset builder that makes
LocalDataset . |
Modifier and Type | Field and Description |
---|---|
protected IgniteBiPredicate<K,V> |
AbstractCrossValidation.filter
Filter.
|
Modifier and Type | Method and Description |
---|---|
AbstractCrossValidation<M,L,K,V> |
AbstractCrossValidation.withFilter(IgniteBiPredicate<K,V> filter) |
Modifier and Type | Method and Description |
---|---|
protected double[] |
AbstractCrossValidation.score(Function<IgniteBiPredicate<K,V>,DatasetBuilder<K,V>> datasetBuilderSupplier,
BiFunction<IgniteBiPredicate<K,V>,M,LabelPairCursor<L>> testDataIterSupplier)
Computes cross-validated metrics.
|
protected double[] |
AbstractCrossValidation.score(Function<IgniteBiPredicate<K,V>,DatasetBuilder<K,V>> datasetBuilderSupplier,
BiFunction<IgniteBiPredicate<K,V>,M,LabelPairCursor<L>> testDataIterSupplier)
Computes cross-validated metrics.
|
protected double[] |
AbstractCrossValidation.scorePipeline(Function<IgniteBiPredicate<K,V>,DatasetBuilder<K,V>> datasetBuilderSupplier,
BiFunction<IgniteBiPredicate<K,V>,M,LabelPairCursor<L>> testDataIterSupplier)
Computes cross-validated metrics.
|
protected double[] |
AbstractCrossValidation.scorePipeline(Function<IgniteBiPredicate<K,V>,DatasetBuilder<K,V>> datasetBuilderSupplier,
BiFunction<IgniteBiPredicate<K,V>,M,LabelPairCursor<L>> testDataIterSupplier)
Computes cross-validated metrics.
|
Constructor and Description |
---|
CacheBasedLabelPairCursor(IgniteCache<K,V> upstreamCache,
IgniteBiPredicate<K,V> filter,
Preprocessor<K,V> preprocessor,
IgniteModel<Vector,L> mdl)
Constructs a new instance of cache based truth with prediction cursor.
|
LocalLabelPairCursor(Map<K,V> upstreamMap,
IgniteBiPredicate<K,V> filter,
Preprocessor<K,V> preprocessor,
IgniteModel<Vector,L> mdl)
Constructs a new instance of local truth with prediction cursor.
|
Modifier and Type | Method and Description |
---|---|
static <K,V> BinaryClassificationMetricValues |
Evaluator.evaluate(IgniteCache<K,V> dataCache,
IgniteBiPredicate<K,V> filter,
IgniteModel<Vector,Double> mdl,
Preprocessor<K,V> preprocessor)
Computes the given metrics on the given cache.
|
static <L,K,V> double |
Evaluator.evaluate(IgniteCache<K,V> dataCache,
IgniteBiPredicate<K,V> filter,
IgniteModel<Vector,L> mdl,
Preprocessor<K,V> preprocessor,
Metric<L> metric)
Computes the given metric on the given cache.
|
static <K,V> BinaryClassificationMetricValues |
Evaluator.evaluate(Map<K,V> dataCache,
IgniteBiPredicate<K,V> filter,
IgniteModel<Vector,Double> mdl,
Preprocessor<K,V> preprocessor)
Computes the given metrics on the given cache.
|
static <L,K,V> double |
Evaluator.evaluate(Map<K,V> dataCache,
IgniteBiPredicate<K,V> filter,
IgniteModel<Vector,L> mdl,
Preprocessor<K,V> preprocessor,
Metric<L> metric)
Computes the given metric on the given cache.
|
static <K,V> RegressionMetricValues |
Evaluator.evaluateRegression(IgniteCache<K,V> dataCache,
IgniteBiPredicate<K,V> filter,
IgniteModel<Vector,Double> mdl,
Preprocessor<K,V> preprocessor)
Computes the regression metrics on the given cache.
|
Modifier and Type | Method and Description |
---|---|
IgniteBiPredicate<K,V> |
TrainTestSplit.getTestFilter() |
IgniteBiPredicate<K,V> |
TrainTestSplit.getTrainFilter() |
Constructor and Description |
---|
TrainTestSplit(IgniteBiPredicate<K,V> trainFilter,
IgniteBiPredicate<K,V> testFilter)
Constructs a new instance of train test split.
|
TrainTestSplit(IgniteBiPredicate<K,V> trainFilter,
IgniteBiPredicate<K,V> testFilter)
Constructs a new instance of train test split.
|
Constructor and Description |
---|
SqlDatasetBuilder(Ignite ignite,
String upstreamCache,
IgniteBiPredicate<Object,BinaryObject> filter)
Constructs a new instance of cache based dataset builder that makes
CacheBasedDataset . |
SqlDatasetBuilder(Ignite ignite,
String upstreamCache,
IgniteBiPredicate<Object,BinaryObject> filter,
UpstreamTransformerBuilder transformerBuilder)
Constructs a new instance of cache based dataset builder that makes
CacheBasedDataset . |
Modifier and Type | Method and Description |
---|---|
<K,V> M |
DatasetTrainer.fit(Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiPredicate<K,V> filter,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.fit(Map<K,V> data,
IgniteBiPredicate<K,V> filter,
int parts,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Ignite ignite,
IgniteCache<K,V> cache,
IgniteBiPredicate<K,V> filter,
Preprocessor<K,V> preprocessor)
Gets state of model in arguments, update in according to new data and return new model.
|
<K,V> M |
DatasetTrainer.update(M mdl,
Map<K,V> data,
IgniteBiPredicate<K,V> filter,
int parts,
Preprocessor<K,V> preprocessor)
Gets state of model in arguments, update in according to new data and return new model.
|
Modifier and Type | Method and Description |
---|---|
default DatasetBuilder<Vector,Double> |
DataStreamGenerator.asDatasetBuilder(int datasetSize,
IgniteBiPredicate<Vector,Double> filter,
int partitions)
Convert first N values from stream to
DatasetBuilder . |
default DatasetBuilder<Vector,Double> |
DataStreamGenerator.asDatasetBuilder(int datasetSize,
IgniteBiPredicate<Vector,Double> filter,
int partitions,
UpstreamTransformerBuilder upstreamTransformerBuilder)
Convert first N values from stream to
DatasetBuilder . |
Modifier and Type | Method and Description |
---|---|
void |
IgniteSpiContext.addLocalMessageListener(Object topic,
IgniteBiPredicate<UUID,?> p)
Register an local message listener to receive messages sent by remote nodes.
|
void |
IgniteSpiContext.removeLocalMessageListener(Object topic,
IgniteBiPredicate<UUID,?> p)
Removes a previously registered local message listener.
|
Modifier and Type | Class and Description |
---|---|
class |
TensorFlowClusterGateway
TensorFlow cluster gateway that allows to subscribe on changes in cluster configuration.
|
GridGain In-Memory Computing Platform : ver. 8.9.15 Release Date : December 3 2024